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The main motivation behind the preparation of this handbook was 
to search for answers not only to the question “how to measure stress?”, but to 
go even further and ask “how to measure stress in a driver?”. Such a challenge, 
which goes beyond the doors of a well-controlled laboratory and requires 
expert knowledge of measurement tools in the field of psychophysiology, is 
what our Human Factors team at Robotec.ai is passionate about. Based on 
our experience in studying drivers in variable experimental conditions and 
environments, we would like to introduce another interesting challenge that 
will hopefully grasp the attention of developers working on driver assistance 
and monitoring systems – the phenomenon of stress among drivers.

However, before getting to the point, we will start with a brief conceptualiza-
tion of the stress phenomenon. What does it mean to be under stress? How 
do our bodies work then? Are there any cognitive or behavioral correlates to 
this state? Can we easily detect the period when we are stressed and quantify 
it? As a starting point, we would like to provide an overview of the stress-re-
lated matter, based on available research works and our expertise in scientific 
methodology.

Right after the “Stress 101” intensive course from the previous paragraph, we 
start our dive, targeting a specific use case for stress detection or predic-
tion—driving-related context. In order to do so, we introduce you to two 
major ways to estimate stress—subjective and physiological assessment, and 
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further discuss them, with examples derived from selected research works in 
the domain of driving under stress. After running through some fascinating 
research examples, you will probably notice that things are getting really 
complex—we are here to help, and this is why we also wrote a brief section 
about multimodal approaches, and discussed several applications of Artificial 
Intelligence algorithms in driving studies. Finally, we close the handbook 
with several conclusions, take-home messages, and an overview of the current 
market.

The document is divided into four pieces, each devoted to different aspects of 
the phenomenon of stress: 

The introductory section Stress – easy to feel, difficult to describe? serves as 
a brief initiation to the concept of stress, with references to supplementary 
readings in this domain. We further narrow our scope of interest to the 
phenomenon of acute stress, which is the subject of subsequent investigations.

Chapter Our bodies and stress – an overview covers the more sophisticated 
image of stress from psychological and physiological perspectives. Further, 
we summarize selected stress assessment strategies both in subjective and 
physiological contexts.

Chapter Diving into driving: on driver stress recognition is the core part of the 
document, with a careful selection and discussion of research works in the 
domain of stress and driving studies. Please note that the handbook is not 
a systematic review nor a meta-analysis of existing research work. Its scope 
is limited to numerous examples of research work in that domain. 

Chapter Market overview and concluding remarks serves as a space for com-
ments on potential applications of stress assessment strategies in the driving 
context, and on eventual limitations inherent in assessing—sometimes 
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very complex—cognitive states. This section also provides an overview of 
the commercial solutions tailored to stress detection or mitigation in the 
automotive context. Finally, we summarize the core points and concepts for 
the assessment of stress. If you reach this point, starting from the first chapter, 
congratulations!





i n t r o d u c t i o n

S T R E S S  
–  E A S Y  TO  F E E L ,  

D I F F I C U LT  
TO  D E S C R I B E ?
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Stress is a phenomenon present in everyone’s lives, occurring in 
different conditions and daily life situations, with varying intensity and peri-
od. We may face stress during different times of the day or because of certain 
events. Our experience of stress may vary, just like our ways of coping with it. 
Workplace, meetings, or human interaction contexts may influence stress as 
social or cognitive factors. Yet, there are also physiological, bodily stressors 
such as hunger, pain (e.g., Kogler et al., 2015), or uncomfortable temperature 
conditions (e.g., Baek et al., 2009). Although short-term stress may be crucial 
for our survival through metabolic induction of rapid reactions to stressors, 
longitudinal exposure to stress may negatively influence our well-being and 
general health status (e.g., Dhabhar, 2014; McEwen, 2008). Some diseases may 
be linked to chronic stress exposure, but the area of such clinical consequenc-
es, and the chronic stress itself, is outside the scope of the handbook. For 
general reviews on stress, please refer to e.g., Dhabhar (2014), McEwen (2008), 
Lupien et al. (2009).

Recent developments in consumer technology and personal health tracking 
(e.g., through wearable technology, mobile applications) are rapidly broad-
ening the scope of possibilities to include sensors in digital monitoring of 
our health statuses. One of the fields of interest in digital health assessment 
is tracking the occurrence of stress. Currently, there is a great interest in 
the development of technologies that could help us mitigate the effects of 
exposure to stress or detect it and react onward. In some contexts, such as 
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car driving, stress may seriously contribute to safety-critical events and crash 
risks. Early detection of stress-related behavioral consequences could help 
counteract its effects on road safety, or, as predicted in the case of semi-auton-
omous driving solutions, signal to the system to take control of the car. It is, 
therefore, interesting to what extent observable correlates of stress may help 
predict or detect its presence and further mitigate the influence of negative 
stress outcomes. In the present review, we would like to narrow its scope to 
the recent ideas and advancements in acute stress detection and prediction, 
with further potential application in the domain of automotive assistance 
and monitoring systems. 

In the following chapter of the handbook, we lean into the phenomenon 
of stress from both psychological and physiological perspectives in order 
to grasp the basic knowledge necessary for further driver-oriented consid-
erations. Then, we discuss existing ways to assess the occurrence of stress, 
among which, tentatively, we can distinguish subjective measures and tech-
niques based on physiological data. The main part of this handbook is an 
elaborate overview of research works aimed at stress evaluation in driving 
conditions, in order to finally get to the place where we will discuss the poten-
tial possibilities of stress detection in drivers operating vehicles. In addition 
to summing up some of the existing subjective assessment techniques, we 
discuss the most popular physiological measurement techniques in the field. 
Further, we take a quick look at the stress classification problem itself, which, 
thanks to the recent boost in Artificial Intelligence (AI), especially Machine 
Learning (ML), seems to be much more “doable” than ever before. Some 
examples, arguments in favor, and limitations of AI in the setting we focus 
on are summarized. 
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In the last part of the handbook, we look at some of the current commercial 
attempts to apply stress estimation approaches proposed in the automotive 
industry. This chapter also serves as a conclusion, with a summary of the 
potential and limitations of technology in the estimation of driver stress.





c h a p t e r  1 . 

O U R  B O D I E S  
A N D  S T R E S S  

–  A N  O V E R V I E W
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Based on our own experiences, we can usually pretty accurately 
estimate when we feel stressed. However, in addition to our subjective as-
sessment of the feeling of stress and its accompanying emotions, there are 
a number of processes in our bodies that prepare us to confront a stressor, 
and that will bring the body back to homeostasis. Thus, we will see that the 
overall stress state can be considered in several subcategories, with expla-
nations of its mechanisms spanning from the cellular levels through higher 
levels of organization (e.g., physiological at the level of body systems) up to 
psychological or psychosocial contexts. In this chapter, we briefly highlight 
the key physiological mechanisms, as well as the effects observable in the 
operation of particular human body systems. We also turn our attention to 
some psychological correlates, considering the effects of stress on human 
cognitive functioning. We consider short-term exposure to stress, i.e., what 
happens when we are confronted with a stressor and immediately afterward. 
However, we do not address the correlates and consequences of long-term 
exposure to stress (for review see e.g., Marin et al., 2011; Romero-Martínez et 
al., 2020; McEwen, 2017). 

It is also worth noting that difficulties exist in reaching a precise, operational 
explanans of “stress”. Depending on the boundary conditions set for the defi-
nition, it may seem too broad or too narrow for different levels of explanation1. 

1	� If you are interested in a thorough discussion of the concept of stress, and a critique of its cur-
rent scope of usage, please refer to e.g., Koolhaas et al. (2011).
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Due to lack of specificity, the term “stress” is frequently criticized (e.g., Kar-
atsoreos, 2018; Koolhaas et al., 2011), and differences in conceptualization 
of stress may influence the discussion and reproducibility of experimental 
results. However, in this section we will not dive into the discussion of ter-
minology and appropriateness of the term “stress”, as the primary focus is to 
describe some basic, well agreed upon aspects of stress mechanisms. 

Another key piece of information that should constantly be kept in mind is 
that there can be significant inter- and intraindividual variability in the caus-
es and effects that accompany the onset of stress, whether at the physiological, 
psychological, or behavioral level. It is also important to recognize the associ-
ations and differences in stress reactivity due to, among other things, personal 
characteristics (e.g., gender, age, genetic factors), and variables affecting the 
condition, such as sleep quality or medications intake (Moses et al., 2023). 
All of these factors, as well as differences in conditions and the experimental 
environment, should be remembered when making comparisons of results 
from different sources.

At the level of systemic organization, there exist two processing streams—the 
hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic adrenomed-
ullary (SAM) system (e.g., Koolhaas et al., 2011), which activation is crucial 
for the initiation of physiological processes that enable the management 
of the body’s resources in order to respond appropriately to a stressor (e.g., 
Tsigos & Chrousos, 2002; Turner et al., 2020). Hypothalamic and pituitary 
structures influence an increase in cortisol levels produced in the adrenal 
cortex (Chrousos, 2009 as cited in Turner et al., 2020). This hormone, in turn, 
influences glucose secretion and the activity of the sympathetic part of the 
autonomic nervous system (e.g., Dunn, 2008). The other key hormones in the 
process are adrenaline and noradrenaline (Chrousos, 2009 as cited in Turner 
et al., 2020). Consequently, results of the mechanisms enable the body to 
prepare for a response to a stressor by mobilizing the action of specific organ 
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systems, including the cardiovascular system—with, for example, increasing 
blood flow in skeletal muscles or increasing heart rate (e.g., Herd, 1991), the 
respiratory system—e.g., increasing respiratory rate or occurrence of breath-
ing irregularity (e.g., Grossman, 1983), the urinary functions—such as a need 
to urinate (e.g., Shimizu et al., 2021), or the muscular system, with increasing 
tension in some of the skeletal muscles (e.g., in trapezius muscle, see Nilsen 
et al., 2007; Wijsman et al., 2013, and frontalis muscle, see Nilsen et al., 2007). 

The mobilization of organ systems in response to stress is known popularly as 
the “fight or flight” (plus “or freeze” among some of the later works) response, 
which signifies the body’s readiness to respond in relation to the stressor 
(Bracha et al., 2004; Germer & Neff, 2015), with “fight” response to face the 
stressor, “flight” response—to distance oneself from the stressor, or the 

“freeze” response—which is a response through which no defensive or escape 
action is undertaken. In popular scientific terminology, the “fight or flight (or 
freeze)”2 response is associated with the activity of the sympathetic part of the 
autonomic nervous system, while the relaxed state, also known as “rest and 
digest”, is associated, in turn, with increased activity of the parasympathetic 
part of the autonomic nervous system, which promotes the occurrence of 
digestion and resting processes of the body (e.g., Wehrwein et al., 2016)3. This 
division serves only as a pictorial representation of the actions performed by 
the autonomic nervous system components, as many researchers point to 
more complex interactions in the maintenance of the body’s homeostasis (see 
e.g., Shaffer & Ginsberg, 2017; Wehrwein et al., 2016). 

2	� For a thorough discussion of the fight or flight or freeze conceptualization, see Bracha et al., 2004. 
For discussion of the concept of freezing, you can refer to Noordewier et al., 2020.

3	�� The popular-scientific terms “fight or flight” and “rest and digest” are not precise scientific de-
scriptions, and the relationship between the sympathetic and parasympathetic parts of the au-
tonomic nervous systems is more complex. For a discussion on that matter, please refer to e.g., 
Wehrwein et al., 2016. Furthermore, in the behavioral context, next to the “fight or flight” strat-
egy, there is proposed the “tend and befriend” strategy, and there may occur gender-related dif-
ferences in strategy adoption (Taylor et al., 2000 as cited in Mayo & Heilig, 2019).



With that knowledge, we can move on to high-
er-level effects, that is, physiological correlates 
of stress in human organ systems. From the 
perspective of this handbook, the key point is 
that changes in physiological parameters may 
exist during the stress response, some of which 
can be measured under experimental conditions. 
Because of that, we aim to summarize a group of 
well-established observations before introducing 
you to selected stress evaluation techniques. Ba-
sically, first, we need to learn what may happen 
in the body, and then we can focus on selecting 
the proper testing environment and measurement 
techniques. 

The abovementioned SAM system and the HPA 
axis affect a cascade of processes in the body, 

Figure 1. 
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preparing it to respond to a stressor, yet please note that the intensity and 
direction of changes may be subject to inter- and intraindividual variability. 
In the case of the cardiovascular system, there are usually changes associ-
ated with an increase in the frequency (e.g., Lundberg et al., 2002; Nilsen et 
al., 2007) and strength of heart contractions, as well as changes in vascular 
throughput, resulting in the delivery of more blood to skeletal muscles (e.g., 
Herd, 1991; Carter et al., 2008; Nilsen et al., 2007)4. In a study by Ogorevc et al. 
(2011), participants were exposed to both mental and physical stressors, and 
authors found that the stress exposure influenced not only the increase of 
heart rate, but also of systolic (during heart muscle contraction) and diastolic 
(during heart muscle relaxation) blood pressure levels.

Interesting processes also happen in the muscular system during the reaction 
to a stressor. Selected groups of skeletal muscles may be characterized by 
increased activity—for the sake of trying to undertake some kind of bodily 
response to a stressor, this seems to be a reasonable consequence. Among 
the muscle groups identified by researchers is the trapezius muscle—it has 
been noted to have increased tension among those subjected to a stressful 
stimulus (Lundberg et al., 2002; Nilsen et al., 2007; Wijsman et al., 2013). 
A meta-analysis by Eijckelhof et al. (2013) reviewed a group of studies on 
the activity of selected muscle groups during work-related stress and noted 
increased activity of forearm muscles and neck-shoulder muscles. It is also 
worth noting the responses of mimic muscles (e.g., frontalis muscle, Nilsen et 
al., 2007). However, it should be emphasized that, as Mayo and Heilig (2019) 
pointed out, there may be large interindividual variability in how stress may 
influence facial expressions. Fatima et al. (2020) measured facial muscle 
and trapezius muscle activity during exposure to mental stress. While both 
muscle groups yielded significant results, trapezius muscle activity proved to 
be a better indicator than facial muscles. Thus, we can see that among selected 

4	� For a thorough review on cardiovascular activity, especially on heart rate variability, you can 
refer to Kim et al., 2018. 
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skeletal muscle groups, we can find potential candidates for measuring activ-
ities that may be related to the occurrence of stress.

Important processes happen in the largest—in terms of total area—system of 
our body, the integumentary system. We ourselves have probably experienced 
sweating palms or temples more than once during the experience of stress, 
for example, before a public appearance. Indeed, studies indicate increased 
sweating during the experience of stress, with particular emphasis on the 
palms and feet (e.g., Ohmi et al., 2009), but also the face and armpits (e.g., 
Harker, 2013)5. Jumping from skin to lungs, what happens in the respiratory 
system as we are reaching the stress phase? You may expect, among other 
things, an increased respiratory rate, as shown, for example, in studies by 
Hernando et al. (2015), Nilsen et al. (2007), Suess et al. (1980), decreased 
end-tidal CO2 (Suess et al., 1980), or an increase in minute ventilation (Ma-
saoka & Homma, 1997).

Aspects of body temperature changes that can accompany increasing levels 
of stress are warming up researchers (pun intended) interested in stress 
detection. Using thermal imaging of faces in the visible and infrared light 
spectra, N. Sharma et al. (2013) proposed a method of stress detection based 
on such an approach, with 72% accuracy in stress recognition rate. In a study 
by Levine et al. (2009), which was also oriented toward thermal data analysis, 
authors noted an association between the onset of stress and an increase 
in temperature at the site of the corrugator muscle, which is responsible 
for frowning. Another attempt to build a classification model with thermal 
imaging data was proposed in a study by Gioia et al. (2022). The authors 
observed, among other things, a decreased temperature at the nose tip and 
increased mean forehead temperature, which, like in the Levine et al. (2009) 
study, may be related to increased corrugator muscle activity.

5	� See the review by Harker (2013) for an overview of the neural and biochemical aspects of psy-
chological sweating.



2 9

The last of the physiological phenomena we describe here is what happens to 
pupils during stress. From the perspective of non-intrusive driver monitoring 
systems development, this may be a particularly important variable since 
these systems typically track features related to gaze. A study by Ren et al. 
(2014) involved the Pupil Diameter (PD) signal with the aim of assessing its 
usefulness in distinguishing between relaxation and stress states. Based on 
the classification results obtained, the researchers came to the observation 
that the PD signal performed better than the Galvanic Skin Response signal, 
which describes conductivity on the skin and can change under the influence 
of increased sweating, among others. In the paper by Sakamoto et al. (2009), 
authors examined the relationship between cognitive load, accompanying 
stress, and the properties of the PD signal. They noted that the PD signal 
analyzed in the frequency domain correlated with the state induced by 
cognitively stressful tasks. A similar observation, favoring the use of PD as 
a predictor in the assessment of mental stress, was proposed by Torres-Sa-
lomao et al. (2015), as well as by Zhai et al. (2005), with the latter work also 
allowing us to observe the value of the so-called multimodal approach, which 
will be discussed in one of the following chapters in the handbook. The added 
value of eye-tracking can also be noticed in blink frequency estimation, as 
exemplified by the work of Nagasawa et al. (2020), in which this variable was 
used in addition to PD to estimate stress levels.

The physiological mechanisms discussed above are among the well-described 
stress-related processes. If you are interested in the relationship between 
stress and specific body systems, we encourage you to see e.g., Kim et al. 
(2018), Wehrwein et al. (2016). In the next paragraph, however, we will focus 
on the cognitive-behavioral aspects that can accompany the onset of stress 
or occur afterwards.

As cognition is not a single entity, it would be better to describe the effects 
of stress or its correlates with respect to specific processing streams and 
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functions. It is a relevant starting point for this summary, as the stress state 
may impact specific cognitive functions in a different manner and with 
varying intensity, which was mentioned e.g., in Sandi (2013). There is no 
single causal chain for exposition to stress, as stressors and the environment 
around us, internal, bodily states, and past experiences create a unique set 
of intertwined properties. Sandi (2013) discussed that notion and pointed 
out that the type of the stressor (e.g., mental, physical), its intensity, and 
co-occurring conditions may impact processing of stimuli differently. Some 
of the differences may correlate with other factors, such as age or gender (e.g., 
Moses et al., 2023; Sandi, 2013).

It is also worth emphasizing that when reading and discussing the results, at-
tention should be paid to the health status of the study groups, as depending 
on whether it is an experimental study among healthy individuals or a study 
oriented to a specific population of patients, such as those with neurological 
damage, the results for cognitive functioning may differ, as mentioned e.g., 
by Moses et al. (2023)6.

When it comes to the aspects related to memory, its subdivisions such as 
working memory, memory consolidation and memory retrieval may be 
differently affected by the occurrence of acute stress (LeBlanc, 2009). In 
the meta-analysis by Shields et al. (2016), authors concluded that stress may 
negatively influence working memory, although there may occur mediating 
effects of memory workload or gender. Proposed models of the ways in which 
working memory could be affected and therefore impaired, were described, 
e.g., in Moses et al. (2023), with a suggestion that the deactivation of the 
dorsolateral prefrontal cortex and Central Executive Network in general 

6	� The review paper by Moses et al. (2023) is a very thoroughly prepared resource on cognitive and 
emotional aspects in the light of research on the impact of stress. It contains a summary of com-
monly used psychosocial stimuli, descriptions of networks that may be involved in processing 
when one is exposed to a stressor, as well as a summary of reports with studies using neuromod-
ulation in the preset context of psychosocial stressors.
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may take part in this process. Several examples in favor of the hypothesis on 
the disruptive effect of acute stress on working memory were also described 
in the review article by LeBlanc (2009). However, in the work of Porcelli et 
al. (2008), the authors indicate that the results for the relationship between 
working memory and stress seem to be mixed, with works suggesting either 
no effect or a negative one. The eventual reasons for inconsistent results 
may be due to different methodological approaches and utilized techniques, 
stressor manipulations, or measures of participants’ performance (see Porcelli 
et al., 2008). In their work, Porcelli and colleagues noticed that the worsened 
performance was associated with the workload put on working memory but 
not with the occurrence of stressors themselves. Contrary to the abovemen-
tioned suggestion by Moses et al. (2023), they observed increased activation 
of prefrontal cortex in stress-related conditions, but authors suggested that 
it may serve as a mechanism necessary to sustain some performance of 
working memory under such difficult circumstances as stress. For memory 
consolidation and retrieval interesting commentary was provided in LeBlanc 
(2009). In the case of moderate stress, or if there is a relationship between 
the content to be consolidated and the stressful experience, there may occur 
an improvement in terms of consolidation. When it comes to the recall of 
information, stress may negatively impact the process. However, it can de-
pend on the task and the content themselves. Two other executive functions 
that were also the subject of the meta-analysis by Shields et al. (2016) are 
cognitive inhibition, which can be seen as a mental ability of restraining 
from running a process7, and cognitive flexibility, which can be defined as 

“the capacity for objective appraisal and appropriately flexible action” (Amer-
ican Psychological Association, n.d.). Through the analysis of experimental 
works, authors concluded that both functions can be negatively affected by 

7	� A detailed explanation of the concept of cognitive inhibition can be found in the work of Ma-
cLeod, 2007. The author proposed a following definition of the term: “Cognitive inhibition is 
the stopping or overriding of a mental process, in whole or in part, with or without intention.” 
(MacLeod, 2007, p. 5).
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stress, with an exception for the phenomenon of response inhibition, which 
can be, on the other hand, improved in a stressful condition. Attention is 
another aspect of cognition that would be interesting to discuss. Based upon 
the work of LeBlanc (2009), it seems that the outcomes for attention during 
stress exposure can be mixed. In the work, the author attempted to explain 
the confusion caused by the observation that sometimes stress can improve 
attentional processes by narrowing the scope of processed information to the 
most relevant aspects, yet in different contexts it may negatively influence our 
abilities to distinguish relevant information. LeBlanc (2009) also points at 
another—very important from the perspective of driving studies—aspect of 
the so-called divided attention tasks, in which performance during exposure 
to stress may be indeed worsened. As in driving studies on stress and dis-
traction, an approach known as dual task paradigm is commonly used, such 
knowledge about the influence of stress may be relevant to the study protocols.

Decision-making can also be negatively affected by the presence of acute 
stressors. An example can be found in the study conducted by Wemm and 
Wulfert (2017), in which 56 participants were first exposed to a stressful task 
(Trier Social Stress Test), and, subsequently, to a task involving decision-mak-
ing (Iowa Gambling Task). Among the participants exposed to the stressful 
situation, authors observed physiological changes consistent with previously 
described results, such as increased heart rate. The stressful situation was 
discussed as negatively influencing the decision-making process, as the 
participants had a narrower perspective of decision consequences. The au-
thors observed also some differences correlating with gender for the relation 
between the influence of stress and decision-making. 

Aside from higher cognitive operations, stress may also affect processing 
of information from different sensory modalities. In the review article by 
Jafari et al. (2017), authors summarized that the existing results support the 
notion that acute stress may negatively affect auditory processing. Yet, not 
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only hearing can be somehow affected. In the work of Shackman et al. (2011), 
authors tested hypotheses about the effects of task-irrelevant stress on visual 
processing. In an EEG-based study they found significant differences in 
time-locked EEG components between the threat and safe conditions, both 
for early and late processing, thus observing how our vigilance and visual 
attention may possibly be influenced by the threat of a stressor.

Having an overview of the very complex relationships between the state of 
acute stress and some bodily systems and cognitive functions we described, 
we can finally proceed to the next step—to investigate if, how, and to what 
extent we are able to track the occurrence of acute stress. We try to target 
the following questions: What could be the most popular methods for that 
purpose? How can we categorize our “hammers”, “nails” and “screwdrivers” in 
the existing “toolbox”? What are the arguments in favor and against the tools, 
i.e., subjective and physiological techniques? 
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1.1. �Exploring methods for assessment 
of acute stress

As we narrowed the scope of the review to some preselected levels of de-
scription for stress, we can right now try to target them by introducing the 
means to assess stress, which have been in use up-to-date, and could be 
helpful in description and tracking of that phenomenon. The “tracking” can 
be tentatively split into subjective and objective measures, and out of them, 
we narrow the scope to standard subjective assessment techniques, such as 
questionnaires or surveys, and for, let’s say, more objectivity-oriented mea-
sures, we will follow the path investigating physiological data collected with 
non-intrusive techniques.

1.1.1. Subjective assessment: questionnaires and surveys

With a brief yet careful introspective look, we can usually recognize whether 
we are stressed at a given time. This is why the subjective assessment of stress 
is of great importance. Questionnaires and surveys are standard tools for 
collecting introspective reports in psychology. Over the course of several 
decades, various methods for reporting have been developed in the field of 
stress research. We can collect subjective answers on different aspects, such as 
perceived stress levels, susceptibility to stress, or risks related to stress. There 
exist both non-specific stress questionnaires and questionnaires tailored to 
the needs of specific groups. 

In Section 2.1. Driving studies: subjective assessment, we discuss several 
examples of questionnaires in the driving context that target the stress 
phenomenon. 

The development of tools for subjective assessment of stress has been driv-
en by the impact of stress on various areas of life and its implications on 



behavior in the most diverse types of situations. 
The development of stress research has certainly 
been important in clinical contexts, as well as 
in general behavioral research, or specifically 
narrowed to various fields of psychology—e.g., 
transport psychology (more details in Chapter 2) 
or industrial, work, and organizational psychology 
(e.g., Salas et al., 2017; Sharit & Salvendy, 1982). 

Speaking of self-report studies, it is important 
to remember that they can take really diverse 
forms—they can be written or oral; collected on 
paper, online, or even via phone; retrospective or 
real-time-based, qualitative and quantitative, to 
name a few. For this reason, such type of research 
can include closed questionnaires, open-ended 
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interviews, various types of scales, and even one-off written reports or pro-
tocols (Pekruna, 2020). 

When, on the other hand, we talk about self-report surveys specifically on the 
topic of stress, it is important to pay attention to what exactly respondents 
can be asked about—here, we can talk either about questions on stressful 
responses themselves (so-called stress responses) or oriented toward exposure 
to events and situations that cause stress, recognized as stressor exposure 
(Crosswell & Lockwood, 2020). The choice of appropriate questions and tools 
depends on the premises of the study. 

One type of tools for subjective measurement of stress are questionnaires of 
different kinds, which can be found in various studies. Those studies might 
involve specific age groups, and questionnaires themselves are often tailored 
for them—for example, the Adolescent Stress Questionnaire for the certain 
age group (Byrne et al., 1995, as cited in Byrne et al., 2007), or Undergrad-
uate Stress Questionnaire for people with certain educational backgrounds 
(Crandall et al., 1992) or professions (Psychology Student Stress Question-
naire, Cahir & Morris, 1991). In addition, because work is often a source of 
daily both short- and long-term stress, a variety of questionnaires related 
to self-reported stress at work have been developed, e.g., Caplan’s Job Stress 
Questionnaire (Caplan et al., 1975, as cited in Harris et al., 1999) or Work 
Stress Questionnaire (Holmgren et al., 2009). 

As was already mentioned, stressor exposure is one of the variables consid-
ered in stress research. This is a variable that can be examined with the use 
of questionnaires such as the Life Event Checklist (Gray et al., 2004), or the 
Stress and Adversity Inventory (Slavich & Shields, 2018). For each stressor 
to which the participant was exposed, additional questions are asked, such 
as the age of contact with the event in question, how long it lasted, or how 
stressful it was. However, due to differences in the way people may perceive 
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certain situations, it is not easy to design a list of questions that would cover 
all potentially stressful events. 

Often, responses and reactions to stressful events can be a more interesting 
object of study than the events themselves. Responses to stressful events or, 
in general, perceptions of specific situations and events as stressful or not 
can be highly individual, and thus the reactions themselves can be extremely 
varied. Such reactions can be both physical—for some, the reaction to stress 
is headache, migraine, abdominal pain, or dizziness (Healey & Picard, 2000), 
and psychological—here mood swings, general fatigue, irritability, or ner-
vousness can be given as examples (Natvig et al., 1999). Therefore, sometimes 
more critical than the stressor exposure itself may be the individual response 
to stressful situations—this refers to the second variable mentioned earlier, 
namely the response to the stressor. In this context, in addition to the other 
more specific questionnaires mentioned earlier, there are also more general 
ones, such as the well-known global measure of stress, used precisely to 
measure response to the stressor—the Perceived Stress Scale (PSS, Cohen 
et al., 1983). The PSS is a tool that departs from the idea of testing exposure 
to a stressor and is used to assess the degree to which certain situations or 
events are stressful for the respondent. It captures respondents’ perception 
of how overwhelmed they are by their current life situation and events. It 
originally used events taken from a certain period back in the respondent’s 
life, and based on 14 questions with a 5-point Likert-type scale, it assessed 
how stressful the events given by the respondent were for them. In this way, 
the researcher moves away from general questions and statements and relies 
entirely on the respondent’s evaluation of both the events themselves and 
their impact on them. 

The number of questionnaires designed and developed specifically for stress 
research is so large that it would be impossible to describe, or at least list 
all of them, and this is not the primary goal of the handbook. Yet, they are 
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not the only subjectivity-oriented tools used in stress research, as in such 
studies, researchers also look for various correlates of stress, for example, 
specific personality traits or coping strategies. Such questionnaires are usually 
not tailored explicitly for stress investigation, and yet may be helpful in the 
investigation of personality or behavioral covariates—usually in combination 
with other tools, and therefore can also be included in stress research. An 
example of a tool used in this way is Spielberger’s State-Trait Personality 
Inventory (Spielberger, 1979), which helps assess several emotional conditions, 
e.g., anxiety or anger (e.g., Van Wijk, 2014). 

To conclude, the primary benefit stemming from the application of subjective 
measurement techniques is that we, researchers, have the ability to reach 
some insight into participants’ subjective experiences, such as their thoughts, 
feelings, and beliefs, which would not be currently possible with other 
methods of data collection. Meaning that subjective methods, by definition, 
provide insights into the subjective feelings of the participants that cannot 
be obtained by any objective measures in any way. This is an undeniable and 
huge advantage of this type of research, as well as an advantage over objective 
measures. 

Another undoubted advantage, especially for researchers, is the economic 
aspect of self-report studies. Conducting an interview or doing a question-
naire, whether on paper or online, is inexpensive and can be done in different, 
also out-of-laboratory, environments. Opting for self-report studies is a fairly 
simple way to collect data from many people quickly and at a low cost with 
the use of fewer resources than for other research techniques. 

Additionally, this type of data can be collected in a variety of ways—both 
online or over the phone, as well as in person, by interview or questionnaire, 
orally or in writing. It gives researchers tremendous opportunities to tailor 
the tool and form of data collection to their needs, optimize the entire process, 



3 9

and create a truly naturalistic environment for the study if needed. In this 
way, they can gather data from people spanning both large geographic areas 
and various social, age, or ethnic groups to which they may not have direct 
access. Additionally, self-report studies are easy to administer and can be 
completed quickly. 

Self-report research methods, like any other research tools, have advantages, 
but there also exist limitations that we need to keep in mind. Opposed to 
the possibly wide geographic and ethnic range of self-report studies, in such 
a paradigm there may arise a problem of cultural or language barriers. Such 
studies might not be useful for participants who struggle to comprehend the 
language used in a questionnaire or survey. Aside from language compre-
hension, another important aspect lies in perception of different stressors, 
which possibly can be influenced by culture or the way the questionnaire is 
constructed. All these factors can impact the accuracy of responses, partic-
ularly in studies with culturally diverse populations. However, this is not an 
insurmountable problem—it just means that this type of research requires 
a decent cultural and linguistic adaptation. 

Also, the validity of questionnaires as a research tool can and does come into 
question. Research based on self-reporting is inherently biased due to the 
feelings and emotions of the participant at the very moment of completing the 
questionnaire. Participants may always be prone to bias and, therefore, answer 
questions, e.g., in a socially desirable way. They may forget important details 
or knowingly lie—thus, in such studies, the honesty of the respondents is 
the key, and careful preparation of questions is needed to minimize eventual 
biases. It is a bargain that the researcher must consciously decide on. The 
possibility of receiving not entirely truthful information from the participant 
versus insight into the participant’s mind—most researchers, however, decide 
one way or another that the pros outweigh the cons, or combine the tools to 
cross-check for the eventual biases. 
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Another shortcoming may be the respondents’ potential lack of ability to give 
a reasonably accurate and relevant answer (e.g., answering complex questions 
in a perfunctory manner). To address this issue, researchers usually take care 
of a proper explanation of the study's relevance so that participants feel that 
they should be compliant. If such an approach fails, inspection of outlier 
responses can be performed. Yet, such a task requires great care—cross-check 
questions, for example, may help investigate the participant’s non-compliance 
(e.g., through monitoring the presence of contradictory answers).

In addition, such studies may fail to accurately capture what they are intended 
to measure. Participants may not always be aware of their biases or be unable 
to accurately report on their behavior or attitudes. 

Of course, tools and methods are being developed to compensate for the 
natural shortcomings of self-report-based research, but doubts remain. In 
summary, self-report surveys can provide valuable insights into individuals’ 
subjective experiences, but researchers must be aware of their limitations and 
potential biases. Self-report surveys are an incredibly valuable tool in any type 
of social or psychological research. Additionally, they can be combined, both 
with each other and with objective methods, so they can be used to create 
extremely comprehensive and complete studies and produce valuable data 
and results.

1.1.2. Physiological echoes of stress

Frequently, physiological monitoring is considered as a means of receiving 
“more objective” indices, in contrast to the subjective one, which we can target 
with reporting (see Section 1.1.1. Subjective assessment: questionnaires and 
surveys). As we observed in the previous sections, different physiological 
correlates occur during exposure to stress. Some of them could be monitored 
through nonintrusive technology and their overview would be the leading 



topic of the section. With technological advance-
ments observed in the past several decades and 
the rapid development of nonintrusive data col-
lection solutions, we reached the point in which 
physiological data collection does not necessary 
entail a complicated protocol and very expensive 
equipment. With that being said, we can proceed 
to an overview of several physiological measures 
that are frequently recognized in studies within 
the domain of stress research. 

Keeping to the chronological order of our 
considerations, we will start with the means 
for estimation of cardiovascular system activity. 
There are several techniques being recognized in 
this field, with the major interest in application of 



electrocardiography (ECG) and photoplethysmog-
raphy (PPG). Electrocardiography is a technique 
common in clinical settings, helping to diagnose 
various pathological conditions in the cardiovas-
cular system. In research settings, ECG is usually 
being applied in a simplified manner, with a lower 
number of leads—for example, three leads in the 
case of Einthoven montage instead of convention-
al, clinical twelve leads. 

ECG involves the application of surface electrodes 
on the participant’s body, through which values 
of electrical potential between pairs of electrodes 
are being collected, to be further amplified and 
digitized. Changes in electrical potential are the 
observable correlates of a cardiac cycle, during 
which heart muscle contracts and relaxes, pump-
ing blood over the arteries in a quasi-periodic 
manner (see Figure 2). Afterward, recorded ECG 
time series can be analyzed in multiple ways, and 
there exist tens of standard parameters calculated 

Figure 2. 
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upon the signal (for review see e.g., Shaffer & Ginsberg, 2017; see Table 5 
in Section 2.2 for a description). Next to the popular measure of heart rate, 
heart rate variability being analyzed in time-, frequency-, and nonlinear 
domains may result in a relevant set of information derived from the signal8. 
Descriptions of the selected parameters can be found in Table 5 in Section 2.2. 

Photoplethysmography is a different technique from ECG, as functionally, it 
helps to track changes in blood volume and flow in the vessels, which to some 
extent follow the quasi-periodic character of the cardiac cycle but are also 
sensitive to the influence of body thermoregulation and respiration (Allen, 
2007). The physical-physiological basis for that measurement results from the 
optical properties of blood (such as e.g., light scattering or absorption), and 
the recording setup has two key elements—light-emitting diodes and pho-
todetectors, with the latter collecting “what was left” from the emitted light 
source (for a detailed description, please refer to Allen, 2007)9. Optical aspects 
are thus posing some limitations for the selection of a proper light source for 
PPG, which is usually in the near-infrared spectrum. The resultant time series 
collected via PPG presents changes in the absorption of light emitted from 
the optical device, which is usually mounted on the participant’s fingertips 
or ear. The obtained signal is further analyzed in terms of slowly and rapidly 
occurring changes, as the sources of various components may be associated 
with different physiological phenomena (Allen, 2007). Several popular PPG 
parameters are described in more detail in Table 6 in Section 2.2. 

We can now move to the muscular system and ways to assess the chang-
es that may occur during the stress responses. As we saw in the previous 

8	� If you are interested in diving into more details about ECG, you can read one of Robotec.ai’s 
company blogposts, serving as a great starting point for further readings on ECG. For that mat-
ter, please see Kotynia & Stróż (2023).

9	� The topical review by Allen (2007) is an excellent source of information regarding the physi-
cal, physiological and applicational contexts of PPG. We highly recommend the source work for 
a thorough understanding of the PPG technique.
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chapter, several groups of muscles were found to be changing their activ-
ity level during the presence of stressors, both mental and physical. How 
could such activity be measured? For that reason, we can refer to surface 
electromyography (EMG), which is a non-intrusive technique, contrary to 
intramuscular EMG (iEMG), for which electrode needles have to be inserted 
through the skin surface. The latter gives better signal quality and precision 
of measurement, but due to its invasiveness, iEMG is applied only in clinical 
contexts. Surface EMG, similarly to ECG, uses one or more pairs of electrodes, 
and these are placed on the skin areas above the investigated muscle. With 
electrodes of a smaller diameter, one can also successfully record EMG signal 
from facial muscles, such as corrugator muscle, mentioned earlier. During 
contraction and relaxation of muscles, changes in electrical potential can 
be observed, and such time series can be analyzed in terms of temporal or 
spectral properties, or both, resulting in time-frequency representations. 

Skin, or more generally, integumentary system, is another candidate for 
assessing and tracking stress-related changes. As we already know, sweating 
may occur during stress. The activity of sweating glands is a contributing 
factor for the signal derived with a measurement technique known as Elec-
trodermal Activity (EDA)10. Over the years, since the first measurements of 
skin electrical properties, different terms were developed to describe these 
phenomena (e.g., Galvanic Skin Response) leading to a lack of standardized 
nomenclature, but efforts were made to propose a single (Johnson & Lubin, 
1966, as cited in Tronstad et al., 2022; Critchley, 2002), umbrella term for 

“changes in electrical conductance of the skin […], that result from sympathet-
ic neuronal activity” (Critchley, 2002, p. 132). During increased sympathetic 
activity (e.g., because of a stressor), there may occur significant changes in 

10	� A common view that sweat on the skin surface is the only causal factor for EDA is being con-
fronted by evidence in favor of more complex interactions occurring in the skin. For a compre-
hensive review on that matter, please refer to Tronstad et al. (2022). It is also important to em-
phasize the possible existence of complex interactions between the brain and EDA, as described 
e.g., in Picard et al. (2016).
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skin conductivity (and therefore, resistivity), changing the local environment 
for the flow of electric current. There are both active and passive means to 
measure EDA, with active measuring conductivity/resistivity using a very low 
current passing between the electrodes, and passive measuring skin electrical 
properties as they are (for review see M. Sharma et al., 2016). 

In the EDA signal, we can recognize two major contributions—rapid changes 
due to external or internal causes (e.g., stimulation), known as phasic changes 
or responses, and slower fluctuations, known as tonic changes or levels. A set 
of various parameters can be derived from the signal, with a major focus on 
its amplitude, event durations, but also on properties of the response curve, 
such as slopes or total areas (for review of EDA data processing methods see 
Posada-Quintero & Chon, 2020).

Activity of the respiratory system can also provide us with valuable infor-
mation during or after a stress response. In order to measure respiratory 
properties, various techniques were developed, differing in precision or in 
parameters under investigation. In research settings, devices based on pe-
riodic chest expansion are used frequently due to unobtrusiveness in their 
application. A carefully prepared review article by Liu et al. (2019) covers the 
broad area of tools used for respiratory system performance assessment and 
algorithms, which can aid with the derivation of respiratory information 
from some of the other biosignals. The standard parameters obtained from 
such signal are frequency of breaths or their intensity during stress exposure 
(e.g., Masaoka & Homma, 1997; Suess et al., 1980). 

Body temperature can also serve as a peripheral signal assisting in stress 
estimation, which was exemplified in one of the previous sections. For that 
purpose, thermal cameras or wearable body thermometers can be used. What 
is usually being investigated is the change of local temperature in comparison 
with local baseline, as different body parts tend to have a variable temperature, 



and thus a focus on particular Regions of Interests 
(ROIs) is needed. Analysis of thermal data re-
quires an understanding of various image process-
ing techniques. However, the recent development 
of AI-based tools may facilitate, for example, the 
integration of thermal and RGB images, if needed 
(such an approach was described in, e.g., Cardone 
et al., 2020). 

In order to measure pupil-related changes during 
stress, the most popular technique is eye-tracking. 
Eye-tracking relies on image-based processing, 
facilitating the identification of such areas as 
eyelids, eye corners, eye and its components or 
features—iris, pupil, or Purkinje images. For 
example, with eye-tracking one can receive data 
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about pupil diameter (PD) and its changes, and therefore can investigate 
correlations between PD and stress. However, as the main purpose of an 
eye-tracking application is to estimate a participant’s gaze vectors, such 
a tool can also be utilized to assess behavioral correlates during stress. It is 
possible that our visual attention and the way we focus or distract may change 
during stress exposure, yet to our best knowledge, no particular indices were 
established so far. Some research cues can be found in the works targeting 
cognitive workload—see, e.g., the influence of mental stress on the gaze-click 
patterns in M. Huang et al. (2016), or driver gaze behavior during increased 
cognitive load, resulting in the reduction of peripheral vision (Reimer, 2009), 
but research at the intersection of mental workload, stress, and gaze patterns 
is still needed. 

Last, but not least—brain activity. For its observation, researchers may at-
tempt the challenge through various means, such as functional magnetic 
resonance imaging (fMRI), magnetoencephalography (MEG), functional 
near-infrared spectroscopy (fNIRS), or electroencephalography (EEG). 
However, the first two methods are rather limited to strict laboratory settings 
due to immobility of the measuring devices and required experimental con-
ditions. Yet, still, it should not be a problem for study protocols with a static/
passive setup, in which the participant is asked to watch a recording or solve 
a simple task using buttons. On the other hand, the last two methods can 
be used out of experimental room, but not without limitations. Still, as the 
muscular activity would be the major source of signal artifacts, it is usually 
recommended to perform non-dynamic studies, with participants being 
seated. fMRI and fNIRS rely on the same physiological phenomenon, which 
is a flow of oxygenated and deoxygenated blood in the brain vessels, but the 
physical background of measured signals is different. It goes analogously for 
MEG and EEG, as both methods are oriented toward the measurement of 
activity from the cortex and yet focused on two sides of the phenomenon—
measurement of magnetic fields and electrical fields over time, respectively. 



As an example of stress research incorporating 
neuroscientific methods, in work by Wang et 
al. (2019), the authors studied the influence of 
acute stress on creative processes in a sample of 
young male participants. Using EEG, they found 
significant differences in the power of the upper 
alpha band (one of the frequency bands usually 
recognized in EEG data processing, defined in the 
study as 10–12 Hz) in pre- and post-stress condi-
tions, which they associated with other measures, 
including salivary cortisol and alpha-amylase, to 
infer about the impairing influence of stress on 
a creative process. Other than EEG, also fNIRS 
and fMRI have already found their applications 
in study settings created for stress-inducing par-
adigms, with examples from Kalia et al. (2018) for 
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fNIRS and cognitive flexibility testing, or Zhang et al. (2019) for fMRI in 
a large sample study of connectivity patterns before and after stress exposure.

As all the abovementioned methods look perfectly pretty on paper, and we 
can imagine that ideal stress recognition is at our fingertips (pun intended), 
in reality things are getting way more complicated. There are several key 
points that should be taken into consideration as barriers in physiological 
data collection: artifacts, inter- and intraindividual differences, and ecological 
validity. 

In psychophysiology or, more generally, in the area of biological data acqui-
sition, artifacts are recognized as disruptions occurring in a given dataset 
whose source is different than the one we would like to measure. Let’s put it 
into a specific use case. While we record ECG or EEG data, muscular activity 
from limbs or extraocular muscles activity and eyeball movements—respec-
tively—may be co-recorded in the signal without our intention, and therefore, 
we are accounTable for overseeing such possibilities. Motion seems to be the 
primary source of artifacts in different study settings. Consequently, it is 
highly recommended to limit the participant’s movement to the necessary 
minimum to perform study tasks and take care of the proper study setup so 
that the leads and the participant’s movement will not additionally interfere 
with each other. 

A proper setup design may be of great help on many levels, as we can 
prevent, predict, and preprocess—let’s call it a 3P rule for now. 
Through prevention, we can think about any aspects of the procedure 
environment that can be prepared in a manner limiting the contribution 
of artifacts, such as proper seating of a participant, adequately scheduled 
breaks in the study, and an accurate montage of recording tools, being 
non-intrusive for the participant, but also minimizing the chance of leads' 
movement, for example. Through prediction, we can consider carefully 



what could possibly happen in the study in terms 
of internal artifacts—those that are not associated 
with the environment and cannot be solved with 
prevention, and what we can do to control such 
influence—for example, if we record EEG and 
expect that participants will blink frequently for 
some reason, it would be great then to co-record 
electrooculographic (EOG) signal for the further 
step—preprocessing. Prediction can help us 
to solve some of the technical issues that will arise 
in the preprocessing step, as having co-registered 
signals can help to disentangle signal sources in 
the data, which are affected by the internal arti-
facts. The preprocessing phase is very challenging 
because, in this step, we need to clean the data and 
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prepare it for subsequent analysis. Expertise in the interpretation of biosignal 
data is of great importance, as we need to understand the physiological basis, 
transfer it to clarification of what we observe in the signal, and eliminate 
the influences coming from different sources than the one of our interest. 
For each of the discussed biosignals, there are usually sets of standards or 
rules of thumb in terms of primary signal filtering in order to get a readable 
output of the recorded physiological phenomenon. Co-recorded signals from 
the prediction step can be not only analyzed on their own, but also help 
to clean other potentially affected signals. In the case of EEG, having EOG 
co-recorded, we can manage to statistically separate the influence of ocular 
movements activity on EEG through the means of such techniques as, for 
example, Independent Component Analysis (ICA). This is just an illustration 
of how important it is to have a global-local perspective on study protocols. 
However, we need to remember that not the methods, but the hypotheses 
drive the study, and the methods are simply the tools that we need to integrate 
during the operationalization phase. On the other hand, if the experimental 
protocol is under preparation and we would like to apply a certain method 
in the study, we need to make sure that the requirements for the method 
used are also met. For example, suppose we would like to record ECG and 
compare between conditions. In that case, the conditions should be prepared 
in a manner enabling us to interpret the data further correctly, e.g., not being 
too short, as the resultant parameters will not correctly “grasp” the physiolog-
ical phenomenon (e.g., a recommendation for HRV analysis to have at least 5 
minutes of recording, see Heathers, 2014). It is also important to emphasize 
the role of baseline recording for physiological data. There are at least two 
reasons for that—if we want to see whether A influences or co-exist with B, 
the baseline or control condition is needed; also, inter- and intraindividual 
variability can be an important factor, so if we want to observe any group 
effects, the baseline is necessary to see from what “place” we start. 
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Inter- and intraindividual variability are the two important limitations also 
for the physiological data interpretation, even if those are frequently seen 
as “objective” measures. Responses to stressors vary to some extent among 
participants, but may also vary in a single person, because of different factors 
such as sleep quality or medication intake over time (see Chapter 1. Our bod-
ies and stress – an overview). With longitudinal or repeated-measures study, 
it is necessary to consider such factors as possible moderators of the effects. 
Conducting a baseline session may at least serve as a referential measure in 
each study separately. 

Another limitation, which could be observed in stress research as well, is 
that when using physiological data acquisition, we need to follow some rules 
that, as a result, may impact the ecological validity and interpretability of 
the results. Subjective assessment may also face previously mentioned issues, 
e.g., with biases or answering in a socially desirable manner. Physiological 
recording, on the other hand, may limit the participants’ freedom of move-
ment due to the recording setup, influence their personal ways of responding 
to stressors, or even induce additional stress because of the laboratory setting 
and strict protocol. These can be seen as serious limitations on the path to 
a naturalistic approach in data collection. However, there are possible ways 
to try at least to minimize such contributions. One of them is a promising 
development of wearable technologies for physiological data acquisition, 
which could be beneficial in terms of participant’s overall comfort through-
out the study. The second suggestion is related to the previous statements 
about prevention—having a clear and well-prepared protocol for the study, 
we can actually help participants immerse themselves in the environment 
and minimize the “laboratory experience” through careful cooperation and 
explanation of the study steps. 

Now, we will immerse ourselves in Chapter 2, which will be specifically devot-
ed to stress recognition in the context of driving. As our main interest is in 



searching for possible correlates, which could be 
helpful in the development of automated systems 
for stress recognition, we will go through some 
of the measures introduced above, then dive into 
them and describe in detail some of the param-
eters, which could be potentially used in future 
testing of stress detection solutions.
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As we learned about the foundations of stress and some basic 
tools for its assessment, let’s now narrow down the context to the specific use 
case—identification of stress in driving context. 

In recent years, recognition of driver stress has attracted attention in the au-
tomotive industry, in particular due to the development of Advanced Driver 
Assistance Systems (ADAS), and specifically Driver Monitoring Systems 
(DMS). DMS are recognized as a promising tool to address human-related 
risk factors in road safety, such as drowsiness, distraction, or stress. Through 
estimation of the driver’s visual attention targets and the overall level of arous-
al and alertness, DMS can classify in real-time whether the driver retains the 
ability to drive safely. Different strategies can be developed upon recognition 
of the driver’s state of arousal—these could be alerting messages, delivered 
through one or more of several modalities (e.g., tactile, auditory, or visual), 
or—in the case of semi-autonomous vehicles—these could be safety-oriented 
maneuvers, aiming at finding a safe spot in which the vehicle can be stopped, 
thus limiting the risk of safety-critical events. 

A challenging question arises: how would the systems be able to recognize 
that the driver is under stress? Most of the DMS work on the driver’s image 
data. Can stress be easily assessed in such a setup? This is not an easy question, 
as the recorded purely behavioral data can lead to ambiguous conclusions 
on someone’s state. Therefore, there is a need for referential measures, which 
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could be good candidates for stress recognition on the basis of earlier research 
efforts, in which they were co-recorded in stress-inducing paradigms. Having 
such referential measures (also recognized as “ground truth”) can be valuable 
for further investigation of the relationships between the state of stress and 
the observable behaviors, which could be recorded with DMS cameras. Ref-
erential measures could then serve as some sort of “labels” in the subsequent 
steps of DMS development and training of the algorithms. Still, it is not an 
easy task, as there are absolutely important factors of inter- and intraindivid-
ual variability that should be taken into consideration. The phenomenon of 
stress is susceptible to these aspects, and even if there are group tendencies in 
the recorded information, there still could be difficulties in its interpretation 
and implementation on the level of a single driver.

In this section, we describe some of the exemplary findings from existing 
research works aiming at the recognition of stress in a driver-related con-
text. Please remember that this work is an overview, not a meta-analysis or 
a systematic review. As you will see, referential measures will aim to cover 
both the subjective and objective aspects of stress responses. Using these two 
perspectives may be crucial for a successful research project in the domain 
of stress recognition.

Another trend, which is worth noting, is that most of the reviewed studies 
attempted to target the phenomenon of stress by the use of more than a single 
referential measure—such approaches are recognized as multimodal, and aim 
at grasping various levels of information, to further make stress recognition 
more accurate, based on multiple information sources. Multimodal approach-
es and some existing examples, including the usage of Machine Learning 
techniques, are covered in more detail in Section 2.4.

Before we delve into examples of driving stress studies for which subjective 
and psychophysiological measurements found their applications, let’s turn 
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our attention to the issue that will repeatedly be mentioned in discussed 
studies—the stressors. As we already know, to study stress under controlled 
conditions, it is also essential to understand how stress can be induced. So 
far, we have seen that the main dividing axis separates stressors into physical 
and mentally taxing ones. Based on observations and the publications we 
refer to in subsequent paragraphs, we note that mental stressors are much 
more frequently used in studies of stress in drivers. From the area of physical 
stressors, we can find studies in which, for example, the temperature inside 
the vehicle is manipulated (e.g., Baek et al., 2009). The spectrum of mentally 
taxing stressors is very broad and could merit a separate publication. In 
research related to stress and driving, stressors in the form of tasks that tax 
working memory (e.g., mental arithmetic tasks, Trier Social Stress Test, or 
N-back) are relatively common (e.g., Balters et al., 2021; Huang et al., 2020; 
Lanatà et al., 2014), and next to them stimuli directed at attentional processes 
(e.g., visual search in Anzengruber & Riener, 2012), or cognitive-manual 
resources (e.g., Ashton et al., 1972) are another methods for stress elicitation. 
Elements of simulation or, in the case of naturalistic studies, a changing en-
vironment, such as the complexity of the road infrastructure or the volume 
of traffic at a given time, are also sometimes used (e.g., Affanni et al., 2022; 
Bitkina et al., 2019; Cardone et al., 2020; Dobbins & Fairclough, 2018; Healey 
& Picard, 2000; Kerautret et al., 2022), thus resulting in a more ecological way 
of providing stimulation. Therefore, in the field of driver stress research, there 
is a significant diversity of scientific studies due to variability in the choice of 
stressors, but also differences in methodological categories, such as exposure 
time, the complexity of the experimental scenario, or the measurement tech-
niques used. Consequently, it is not easy, if not impossible, to propose a single 
coherent meta-analysis of stress studies in drivers, and a more reasonable 
approach seems to be covered by a thorough review of the results for a group 
of studies with a methodological approach as similar as possible. In such 
subgroups, it could be achievable to draw high-level conclusions, nevertheless, 
with the caveat that the studies still may differ in some methodological details.



In addition to the characteristics of the stressor 
as such, it is also important to verify whether the 
stressor had affected the driver and, if so, how 
it was perceived. Accordingly, a fairly popular 
approach is to try to ascertain this by conducting 
a subjective evaluation of the level of stress, for 
which topic-specific scales or questionnaires 
can be used (e.g., in Dobbins & Fairclough, 2018; 
Lanatà et al., 2014), although in some studies we 
encounter a very simple evaluation in the form 
of a discrete scale, basically asking to rate how 
stressed one felt or feels at a given moment (e.g., 
Baek et al., 2009; Balters et al., 2021; Healey & 
Picard, 2000; Kerautret et al., 2022)—for example 
on a  1–10 scale. Unfortunately, there are also 
studies in which the stressor was not subjected to 
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additional evaluation, but only assumed a priori that certain traffic situations 
would be more stressful than others, which, of course, is not necessarily true 
for every participant (e.g., Cardone et al., 2020; Gruden et al., 2019). We will 
dwell on the issue of stress level evaluation and specialized questionnaires 
aimed at vehicle drivers in the next section.
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2.1. Driving studies: subjective assessment 

Questionnaires and surveys of different kinds are used to measure both 
the emotional and perceived physical states of drivers, as well as their opin-
ions—e.g., about a newly introduced system or solution in vehicles, or its 
impact on the quality of driving and the feelings associated with it (Reimer 
et al., 2016). Since driver stress may seriously impact road safety, research 
on this particular condition is very common in the automotive field (see e.g., 
Bustos et al., 2021; Reimer et al., 2016). 

Similarly, as for stress research in general, self-report studies are used when 
examining both stress itself and its impact—in this case, on driving behavior. 
Here, too, researchers often turn to various sorts of questionnaires, scales, and 
interviews, which they implement on drivers both pre- and post-task (Chung 
et al., 2019). With advancements in digital assessment, answering throughout 
the driving study is also possible if safety conditions are addressed first. 

Some standard subjective measures of stress in drivers include rating scales 
that ask drivers to indicate the level of stress they experience on a numerical, 
Likert-type scale or a visual analog scale (VAS) that ranges, e.g., from “not at 
all stressed” to “extremely stressed” (similar examples can be found in e.g., 
Baek et al., 2009; Balters et al., 2021; Healey & Picard, 2000; Kerautret et al., 
2022). Other subjective measures of stress may include open-ended questions 
or checklists that allow drivers to describe specific stressors or factors that 
contribute to their stress. 

In the area of research on drivers and driving stress, among the commonly 
used tools, there are both questionnaires tailored specifically to study stress 
in this very specific group and those dedicated to dealing with stress related 
to exact traffic events. However, as in non-domain-specific stress research, 



some of personality questionnaires can be used 
here, and they can carry valuable information in 
large sample studies. 

Sometimes, in order to seek answers to specific 
hypotheses, more than one questionnaire is used—
they are either combined into one, or specific 
questions corresponding to the study’s objectives 
are derived from them. It is worth noting that in 
studies of stress in drivers, researchers often try to 
find out what traffic situations increase the stress 
level, under what conditions it is the highest, what 
impact it has on drivers, what its consequences 
are, and how it affects the quality of driving and 
coping in traffic. In this type of research, some-
times researchers may need more than one tool. 
For example, Hennessy and Wiesenthal (1999), 



in their research on traffic congestion and driver 
stress, included a set of questionnaires: Driving 
Behavior Inventory—General, State Driver Stress 
Inventory, and State Driving Behavior Checklist to 
measure driver stress and driving behaviors in ac-
tual low – and high-congestion conditions. A list 
of chosen stress questionnaires, the majority of 
which are tailored specifically for the driver stress 
use-case, is presented in Table 1 (see Table 1A for 
the non-specific examples, which may also occur 
in driver stress research). 
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Table 1. �Selected stress questionnaires frequently used  
in driving stress-related studies. 

Driving Behavior Survey (DBS)  
Authors: Clapp et al. 2011

Purpose
Measurement and evaluation of the occurrence of potentially problematic 
anxiety-related driving behavior.

Details
The objective of the survey is to establish the frequency with which specif-
ic actions take place when driving in stressful situations. It is a questionnaire 
based on the 7-point Likert scale. It has 21 questions divided into 3 subscales. 

Examples of use Clapp et al., 2014

Driving Stress Inventory (DSI)  
Authors: Gulian et al., 1989
Purpose Assessment of drivers’ vulnerability to stress reactions while driving.

Details

The DSI consists of 25 items that measure four dimensions of driving stress: 
emotional tension, cognitive anxiety, physiological arousal, and behavioral 
avoidance. Participants rate the frequency with which they experience vari-
ous driving-related stressors on a 5-point Likert scale. 

Examples of use Funke et al., 2007; Mohamad, 2022 

Stress Arousal Checklist (SACL)  
Authors: Mackay et al., 1978

Purpose Measurement of self-reported stress and arousal. 

Details

The SACL is a short checklist consisting of 30 items that assess three dimen-
sions of stress arousal: somatic arousal, cognitive arousal, and emotional 
arousal. Participants rate the extent to which they experience various phys-
iological and emotional symptoms when faced with stressors, such as heart 
palpitations, sweating, racing thoughts, and feeling overwhelmed. 

Examples of use Raggatt & Morrissey, 1997 

Dundee Stress State Questionnaire (DSSQ)  
Authors: Matthews et al., 1999 

Purpose Assessment of transient states associated with performance-related stress.

Details

The original questionnaire contains 90 items. One version of the DSSQ is ad-
ministered before a  task and another version is administered after a  task. 
Items are designed to sample three main domains: mood, motivation, and 
cognition. 

Some of the items used in this questionnaire were taken and repurposed 
from already existing scales, such as UMACL (Table 2).

Examples of use Funke et al., 2007; Saxby et al., 2008
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Driving Behaviour Inventory (DBI)  
Authors: Gulian et al., 1989 

Purpose

Driver stress instrument designed to examine the dimensions of stress in 
drivers and individual driving performances related to stress. The tool recog-
nizes the impact of stressors related to activities other than driving, such as 
family life or problems at work, on driving quality.

Details

The survey consists of 97 questions that cover various topics such as demo-
graphics, details about car usage, frequency and amount of driving, preferred 
road types, accident, and conviction history, attitudes towards such incidents, 
information about health and its impact on driving, work, and personal re-
lationships, as well as questions about personal, domestic, and occupational 
issues. Additionally, the survey explores respondents’ moods, emotions, and 
attitudes towards driving and various traffic situations, including their interac-
tions with other road users. Responses to questions on the frequency of a be-
havior or categorizing a behavior/opinion were presented on a 4-point scale.

Examples of use
Gulian et al., 1990; Hennessy & Wiesenthal, 1999; Kontogiannis, 2006; La-
junen & Summala, 1995; Matthews & Desmond, 1998

Driving Behaviour Inventory–General (DBI–Gen)  
Authors: Gulian et al., 1989

Purpose Evaluation of a range of driving behaviors that may affect safety on the road.

Details

A variation of the DBI that contains some of the items drawn from the DBI. It 
is a subset of DBI, therefore, the original work of the creation of both ques-
tionnaires is considered the same paper and both questionnaires have the 
same authors. The DBI-Gen includes 16 items that assess a general inclina-
tion, or trait susceptibility, towards experiencing stress while driving.

Examples of use Hennessy & Wiesenthal, 2001; Li et al., 2004; Wickens & Wiesenthal, 2005

State Driver Stress Questionnaire (SDSQ) 
Authors: Hennessy & Wiesenthal, 1997 

Purpose
Assessment of the state experience of driver stress. This questionnaire was 
designed to be administered verbally in actual driving situations.

Details

It is comprised of 11 items similar to those from the DBI-Gen, as well as 10 
items from the Stress Arousal Checklist. 

Note that the abbreviated name of this tool (SDSQ) is also used as an abbrevi-
ation for names of different tools e.g., Stress and Depression Screening Ques-
tionnaire.

Examples of use Hennessy & Wiesenthal, 1999; Wickens & Wiesenthal, 2005
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Driver Coping Questionnaire (DCQ) 
Authors: Matthews et al., 1997 

Purpose
Assessment of habitual style of coping with demanding events encountered 
on the road.

Details
The questionnaire consists of 5 coping scales, each having 7 items. The five 
coping dimensions include: Confrontive coping, Task-focused, Emotion-fo-
cused, Reappraisal, and Avoidance. It uses 5-point Likert scale.

Examples of use Skippon et al., 2008

Perceived Stress Scale 
Authors: Cohen et al., 1983

Purpose

Assessment of how individuals perceive situations in their lives as stressful. 
It does so by asking questions about their experiences during the previous 
month and how much they feel their life has been characterized by unpre – 
dictability, lack of control, and feeling overwhelmed.

Details

There are three versions of the PSS. The original instrument is a 14-item scale 
(PSS-14) that was developed in English (Cohen et al., 1983), with 7 positive 
items and 7 negative items rated on a 5-point Likert scale. Five years after the 
introduction of the PSS-14, it was shortened to 10 items (PSS-10) using factor 
analysis based on data from 2,387 U.S. residents. A four-item PSS (PSS-4) was 
also introduced as a brief version for situations requiring a very short scale or 
telephone interviews (Cohen & Williamson, 1988).

Examples of use Dobbins & Fairclough, 2018; Ge et al., 2014

Table 1A. �Selected questionnaires that are used in driving stress-related 
studies, however, their main purpose and usefulness lies 
elsewhere.

Anxious Driving Behavior (ADB) Anxious Driving Behavior (ADB) 
Authors: Clapp et al., 2011Authors: Clapp et al., 2011

PurposePurpose
Assessment of the degree to which an individual experiences anxiety and 
fear while driving. 

DetailsDetails
The scale consists of 19 items that measure anxiety in different driving situa-
tions, such as driving on highways, driving in heavy traffic, and driving in bad 
weather. Each item on the ADB scale is rated on a 5-point scale. 

Examples of useExamples of use Mohamad, 2022 
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Driving Vengeance Questionnaire (DVQ) Driving Vengeance Questionnaire (DVQ) 
Authors: Wiesenthal et al., 2000Authors: Wiesenthal et al., 2000

PurposePurpose
Assessment of driver’s reactions to perceived threats and probe which situa-
tions would elicit the strongest reactions. 

DetailsDetails
The DVQ is comprised of 15 different scenarios that are presented to drivers. 
They are then asked to indicate how they would respond if they found them-
selves in each of the given situations. 

Examples of useExamples of use Hennessy & Wiesenthal, 2002

Driving Cognitions Questionnaire Driving Cognitions Questionnaire 
Authors: Ehlers et al., 1994Authors: Ehlers et al., 1994

PurposePurpose Measurement of the severity of driving phobia. 

DetailsDetails
The initial item pool of 49 items in 4 categories (panic-related concerns, ac-
cident-related concerns, concerns about other adverse events when driving, 
and social concerns). The questionnaire uses a 5-point scale. 

Examples of useExamples of use Barnard & Chapman, 2018

Freight Driving Behavior Questionnaire (F-DBQ) Freight Driving Behavior Questionnaire (F-DBQ) 
Authors: Useche et al., 2021Authors: Useche et al., 2021

PurposePurpose
Assessment of  the driving behaviors and risk factors specific to long-haul 
freight drivers. 

DetailsDetails
It is a  concise version of the DBQ that is modified to suit the driving con-
ditions and common road risk behaviors observed among long-distance 
freight drivers. 

Examples of useExamples of use Djordjević, 2022

Driver Skill Inventory Driver Skill Inventory 
Authors: Lajunen & Summala, 1995Authors: Lajunen & Summala, 1995

PurposePurpose Used to measure perceptual-motor and safety skills.

DetailsDetails
A 29-item self-reported measure of perceptual-motor and safety skills. In the 
Driver Skill Inventory, drivers are asked to rate how weak or strong they feel 
they were in each given skill, using a 5-point Likert scale.

Examples of useExamples of use Kontogiannis, 2006; Martinussen et al., 2014

Driver Behavior Questionnaire (DBQ) Driver Behavior Questionnaire (DBQ) 
Authors: Reason et al., 1990Authors: Reason et al., 1990

PurposePurpose Assessment of the self-reported driving behaviors of individuals.

DetailsDetails
The scale contains 50 items assessing three distinct classes of behaviors: vio-
lations, errors, and lapses.

Examples of useExamples of use Kontogiannis, 2006; Smorti & Guarnieri, 2016
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In addition, there can be questionnaires on specific personality traits or a variety 
of driving situations. A short list of such emotion- and personality-oriented 
questionnaires used for driver research is presented in Table 2. Combining such 
questionnaires with other tools may help reach a broad perspective of the driver’s 
cognitive and emotional states. Of course, it does not mean it is impossible to 
conduct good research on stress in drivers without using the aforementioned 
questionnaires.

There is also another branch of interest in stress research—these are examples of 
cognitive load questionnaires. Researchers use them to evaluate the impact of 
events or additional tasks and their potential correlation with stress. Addition-
ally, they enable comparison between driving quality and the decision-making 
process in risky situations. These questionnaires typically ask drivers to rate 
their mental effort, or the amount of attention required to perform various 
driving tasks, such as navigating, maintaining speed, and avoiding hazards. 

Table 2. �Selected examples of emotion-, cognition-, and personality-related 
tools, which can be found in driving research.

Cognitive Failures Questionnaire Cognitive Failures Questionnaire 
Authors: Broadbent et al., 1982Authors: Broadbent et al., 1982

PurposePurpose
The evaluation of an individual’s probability of making a mistake while car-
rying out a routine task.

DetailsDetails
The CFQ consists of 25 items; each item is drawn from one of the three cate-
gories: perception, memory, or motor function.

Examples of useExamples of use Allahyari et al., 2008; Larson & Merritt, 1991 

State-Trait Anger Expression Inventory (STAXI) State-Trait Anger Expression Inventory (STAXI) 
Authors: Spielberger, 1988 Authors: Spielberger, 1988 

PurposePurpose
Assessment of three components of anger, which are state anger, trait anger, 
and anger expression, and measurement of the influence of those compo-
nents on general health. 

DetailsDetails

The scale consists of 44 items comprised of 5 scales and two subscales. With 
the use of STAXI, participants can report the intensity and the source of ex-
perienced anger. In general, STAXI examines how individuals experience and 
express anger in different situations.

Examples of useExamples of use Brandenburg et al., 2017; Dobbins & Fairclough, 2018
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UWIST Mood Adjective Checklist (UMACL) UWIST Mood Adjective Checklist (UMACL) 
Authors: Matthews et al., 1990Authors: Matthews et al., 1990

PurposePurpose
Measurement of an individual’s mood state by assessing their self-reported 
feelings and emotions. 

DetailsDetails

The scale consists of 24 adjectives describing mood. The mood factors are 
categorized as Hedonic Tone, Tense Arousal, and Energetic Arousal, each com-
prising eight adjectives. Hedonic Tone encompasses adjectives that describe 
pleasantness or unpleasantness, Tense Arousal ranges from anxiety to calm-
ness, while Energetic Arousal encompasses adjectives describing vigor to fa-
tigue. 

Examples of useExamples of use Dobbins & Fairclough, 2018; Dorn & Matthews, 1995 

Minnesota Multiphasic Personality Inventory (MMPI-2)  Minnesota Multiphasic Personality Inventory (MMPI-2)  
Authors: Dahlstrom et al., 1989Authors: Dahlstrom et al., 1989

PurposePurpose

First major revision of MMPI (Hathaway & McKinley, 1943) with some new 
subscales introduced. MMPI-2 replaced original MMPI in use as an upgraded 
version. Both MMPI and MMPI-2 were developed to help professionals with 
evaluating psychiatric disorders.

DetailsDetails

The current form of the MMPI-2 consists of 567 items, but there is a less com-
monly used abbreviated form of the test that consists of the first 370 items of 
the MMPI-2. This form of the questionnaire is used when time constraints on 
the test do not allow the use of the full version. Items in the questionnaire are 
in the form of statements such as “I feel uneasy indoors”, “I feel weak all over 
much of the time”, or “I am afraid of losing my mind” which are supposed to 
help professionals in the diagnosis of certain mental conditions. 

Examples of useExamples of use Tinella et al., 2021

Impulsiveness-Venturesomeness-Empathy questionnaire (IVE) Impulsiveness-Venturesomeness-Empathy questionnaire (IVE) 
Authors: Eysenck et al., 1984; Eysenck et al., 1985Authors: Eysenck et al., 1984; Eysenck et al., 1985

PurposePurpose
IVE was designed to assess three personality traits which are: impulsiveness, 
venturesomeness, and empathy. The IVE has been used to examine the rela-
tionship between impulsivity and illicit drug use.

DetailsDetails

There are two original papers for this scale, as one is dedicated toward chil-
dren and the other one toward adults. In the assumptions of the scale, im-
pulsivity is related to psychoticism and is associated with taking risky ac-
tions without considering the consequences. Venturesomeness, on the other 
hand, is associated with extraversion and risk-taking behavior, in which the 
individual is aware of the risks but engages in the behavior for the thrill.

Examples of useExamples of use Owsley et al., 2003; Ismail et al., 2016
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NEO Five Factor Inventory (NEO-FFI) NEO Five Factor Inventory (NEO-FFI) 
Authors: Costa & McCrae, 1989Authors: Costa & McCrae, 1989

PurposePurpose
The NEO-FFI scale was designed to characterize people based on five per-
sonality traits: Neuroticism, Extraversion, Agreeableness, Openness to Expe-
rience, and Conscientiousness.

DetailsDetails

The NEO-FFI consists of 60 items (5 scales with 12 items each), which are rat-
ed on 5-point scales. The scale contains states ranging from “strongly agree” 
to “strongly disagree”. Might be used in studies on drivers to explore the im-
pact of those personality traits on driving safety.

Examples of useExamples of use Guo et al., 2013; Guo et al., 2016

Raven's Standard Progressive Matrices (SPM) Raven's Standard Progressive Matrices (SPM) 
Authors: Raven & Court, 1998Authors: Raven & Court, 1998

Purpose Purpose 
The goal behind the creation was the need to be able to test abstract reason-
ing independent of language. The tool is considered a non-verbal estimate 
of cognitive skills and fluid intelligence.

DetailsDetails

The test consists of 60 “questions” of increasingly difficult pattern-matching 
tasks and has little dependence on language skills. In addition, a set of 36 
questions of greater difficulty has been designed. The test containing all 96 
questions is called the Raven's Advanced Progressive Matrices Test.

Examples of useExamples of use Biernacki & Tarnowski, 2011

Cognitive load questionnaires typically involve a series of questions or items 
that ask drivers to rate their mental effort or workload on a numerical scale, 
such as the NASA-TLX (Hart & Staveland, 1988) or the Multiple Resource 
Questionnaire (Boles & Adair, 2001). Through these questionnaires, we may 
also ask drivers to rate the difficulty or complexity of specific driving tasks 
or scenarios, such as merging onto a busy highway or driving in inclement 
weather. By assessing cognitive load or mental workload, such tools can 
provide insights into how different driving conditions and stressors affect 
drivers’ cognitive processing, decision-making, performance, and how drivers 
allocate their attention and cognitive resources while driving. 
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Cognitive load questionnaires can also be used to evaluate the effectiveness 
of interventions aimed at reducing the mental workload and stress in drivers, 
such as driver training programs or in-vehicle technologies. A list of chosen 
cognitive load questionnaires used in the studies on drivers is presented in 
Table 3. In summary, subjective measures of stress in drivers can be useful 
for understanding how drivers perceive and cope with stress while driving. 
Some of the measures presented here may to some extent intersect between 
the stress response per se, the assessment of personality or coping strategies, 
and the assessment of effort or load related to the driving task associated 
with a stressor. Although subjective measures of stress can be prone to biases 
and inaccuracies, as drivers may not always be fully aware of their own stress 
levels or may report their stress levels differently depending on their mood 
or context, they can provide valuable insights into the specific stressors that 
drivers experience, such as traffic congestion, road rage, or inclement weather, 
and help identify effective strategies for managing stress on the road. Hence, 
they can be extremely valuable tools in both stress and other research areas. 
However, due to their limitations, it is important to use a combination of sub-
jective and objective measures of stress in drivers to obtain a comprehensive 
understanding of the impact of stress on driving behavior and safety. 
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Table 3. �Selected examples of questionnaires targeting cognitive load, 
which can be found in driving research.

NASA-TLX 
Authors: Hart & Staveland, 1988 

Purpose Obtaining subjective workload ratings in different experiments. 

Details

NASA-TLX dimensions are mental demand, physical demand, temporal de-
mand, effort, and frustration. This questionnaire assesses workload on five 
7-point scales. Increments of high, medium, and low estimates for each point 
result in 21 gradations on the scales. 

Examples of use Anzengruber & Riener, 2012

Driving activity load index (DALI) 
Authors: Pauzié, 2008

Purpose DALI is a revised version of NASA-TLX adapted to driving tasks and studies. 

Details

DALI uses the same factors as NASA-TLX: temporal demand, mental demand, 
effort, performance, physical demand, frustration level. The main difference 
between DALI and NASA-TLX is the fact that DALI is tailored specifically for 
assessing the workload of driving tasks while NASA-TLX can be used in vari-
ous domains. DALI considers factors relevant to driving, including traffic con-
ditions, road complexity, and the need for quick decisions.

Examples of use Gabaude et al., 2012; Piranveyseh et al., 2022

Multiple Resource Questionnaire (MRQ) 
Authors: Boles & Adair, 2001

Purpose
Prediction of interference during multitasking, done by determining the ex-
tent to which tasks use the same resources. This is achieved by assessing the 
overlap in resources used by each task. 

Details
The questionnaire consists of a 17-item measure for subjective workload as-
sessment. Based on a 5-point Likert scale. 

Examples of use Boles et al., 2007
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2.2. Driving studies: physiological measures

Up to this point we successfully learned that stress is a phenomenon ac-
companied by some physiological changes. Accordingly, one of the most 
important and widely used approaches in the literature within the field of 
stress research is the estimation of physiological parameters. In this chapter, 
we look at the physiological data acquisition techniques that are used in mea-
suring the stress response, and then identify the parameters that have been 
highlighted so far in stress research. All the recording techniques discussed 
in this handbook are non-invasive, but they can vary in the complexity of the 
measurement system, as well as in their susceptibility to artifacts in signal 
recording phase. 

A key aspect to keep in mind to avoid false positives is that these responses 
may not be specific to the stress phenomenon alone, and therefore may also 
accompany other physical or cognitive states (e.g., changes in Pupil Diameter 
due to varying light conditions; increase of arterial blood pressure during 
mirthful laughter, see Fry & Savin, 1988), and the level and detectability of 
the response itself will be susceptible to intra- and interindividual factors.

Table 4. �A summary of selected non-invasive techniques utilized in stress 
detection research in driving context.

Electrocardiography (ECG)

Description

A non-invasive measurement of the heart's electrical activity, which is caus-
ally related to the cardiac cycle properties of heart muscles contractions and 
relaxations. The technique is based upon application of electrodes on par-
ticipant’s chest or limbs, and continuous recording. ECG data is usually ana-
lyzed in terms of time-based, frequency-based, or nonlinear characteristics.

Examples of use

Studies: Ashton et al., 1972; Baek et al., 2009; Balters et al., 2021; Cardone et 
al., 2020; Chui et al., 2020; Dobbins & Fairclough, 2018; Eilebrecht et al., 2012; 
Gruden et al., 2019; Healey et al., 1999; Healey & Picard, 2000; Huang et al., 
2020; Kerautret et al., 2022; Lanatà et al., 2014. 

Discussed in reviews: Burlacu et al., 2021; Giannakakis et al., 2019.
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Electroencephalography (EEG)

Description

A non-invasive technique for measurement of brain electrical activity. Elec-
trical potential of neural tissue in cortex changes in time both during rest 
and during different cognitive processes, and such changes can be moni-
tored via EEG. During EEG recording, participant wears a cap with electrodes, 
which collect the signal from the head surface. There are various techniques 
for EEG analysis, with frequency bands-based measures, time-locked analy-
sis, or time-frequency representations as the most common.

Examples of use
Studies: Affanni et al., 2022. 

Discussed in reviews: Giannakakis et al., 2019.

Electromyography (EMG)

Description

In non-clinical settings, EMG is typically recorded from the skin surface, right 
above the muscles of which activity we are interested to investigate. During 
muscle contraction, electrical properties of muscle cells change for a brief 
period, and the changes can be monitored with a nonintrusive technique, 
such as surface EMG. With EMG, one can record and track the periods of mus-
cle contractions and relaxations. EMG is usually being analyzed in terms of 
time- and frequency-based frameworks.

Examples of use
Studies: Healey et al., 1999; Healey & Picard, 2000. 

Discussed in reviews: Giannakakis et al., 2019.

Photoplethysmography (PPG)

Description

PPG is a non-invasive technique enabling real-time monitoring of changes in 
blood flow and volume in vessels. Usually PPG is recorded from participant’s 
fingertips or ears, with a setup consisting of LEDs and photodetectors. The 
time series can be analyzed in terms of slow and rapid changes. 

Examples of use
Studies: Baek et al., 2009; Dobbins & Fairclough, 2018; Gruden et al., 2019. 

Discussed in reviews: Giannakakis et al., 2019.

Eye-tracking

Description

Eye-tracking is based on estimation of gaze vectors on the basis of video im-
ages of participant’s face, with prior identification of eyes’ features, such as 
pupils, irises, or Purkinje reflections. Eye-tracking is measured nonintrusive-
ly, and for modern setups there is no need to mount the system on partici-
pant’s head or to restrict head movements. Typically, gaze vectors are esti-
mated and analysis of gaze in certain regions of interest (ROI) is performed. 
Usually, information about changes of Pupil Diameter can also be derived 
from the output data.

Examples of use
Studies: Mou et al., 2021; Pedrotti et al., 2014.

Discussed in reviews: Giannakakis et al., 2019; Kerautret et al., 2021.
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Respiration

Description

In research settings, respiration is based on nonintrusive measurement of 
chest expansion during breathing. Usually it is being measured with conduc-
tive sensors reacting to expansion of the band around the chest. Respiration 
can be analyzed in terms of e.g., frequency or intensity of breaths.

Examples of use
Studies: Ashton et al., 1972; Baek et al., 2009; Healey et al., 1999; Healey & 
Picard, 2000; Lanatà et al., 2014.

Electrodermal Activity (EDA)

Description

A non-invasive technique to estimate skin conductivity changes, which may 
occur e.g., during stress. Conductivity is measured with electrodes, which 
can be placed on fingertips or foot, where many sweat glands are located. 
EDA can be analyzed in terms of tonic (long-term) and phasic (short-term) 
changes occurring in the signal.

Examples of use

Studies: Baek et al., 2009; Bitkina et al., 2019; Dogan et al., 2019; El Haouij et al., 
2015; Healey et al., 1999; Healey & Picard, 2000; Lanatà et al., 2014. 

Discussed in reviews: Giannakakis et al., 2019.

Thermal imaging

Description

Thermal imaging is a technique involving measurement of emitted infrared 
light. Thermal imaging camera can record changes in skin temperature from 
a predefined distance, and with specified resolution. Thermal imaging data 
can be investigated in terms of ROI analysis.

Examples of use
Studies: Anzengruber & Riener, 2012; Cardone et al., 2020. 

Discussed in reviews: Giannakakis et al., 2019.

In the field of stress research, two prominent recording techniques are elec-
trodermal activity (EDA) and electrocardiography (ECG). Many research 
articles (see Table 4) have evaluated EDA and ECG data, looking for sources 
of so-called “ground truth” or more robust referential measures, and we will 
start the overview with these signals. As keeping track of all the abbreviations 
and parameters discussed in this Chapter may be to some extent challenging, 
Tables 4–7 are here to help you better understand the most relevant tech-
niques and associated variables. 

Because of the convenience and non-invasiveness, ECG is widely used in 
research with vehicle drivers, both in simulated conditions and naturalistic 



studies. In one of the oldest studies from the 
field of stress physiology in drivers (Ashton et al., 
1972), authors set out to evaluate the effect of the 
stressor occurrence on physiological parameters 
while operating a control panel, thus eliciting 
cognitive-manual workload, and simultaneously 
participating in a simulation. Compared to today’s 
high-fidelity driving simulators, this is a  sim-
plified solution, yet it provided very interesting 
results, opening the horizon of new research pos-
sibilities in that period. The researchers measured 
heart activity and blood pressure in parallel and 
observed a positive relationship between heart 
rate and an increase in task complexity. However, 
for changes in blood flow and blood pressure, they 
observed no significant differences between levels 
of difficulty set in the task.

In a very different setting, a study by Baek et al. 
(2009) verified the effects of physical and mental 
stressors on physiological data during naturalistic 
driving study. The researchers were interested in 
HRV parameters, Pulse Arrival Time (PAT) anal-
ysis and RR intervals, which they compared to 
baseline values, but without further investigation 
of group statistics. A relevant take-home message 
from the study is that significant variability in 
physiological responses was observed both inter- 
and intraindividually.



Balters et al. (2021) conducted a  study using 
wearable technology—the Zephyr BioHarness 
3.0™—to examine cardiac function while driving. 
The participants were asked to perform the Trier 
Social Stress Test as a stress-eliciting stimulus or 
to relax before the start of the drive. Mean heart 
rate (HR) and mean RMSSD were selected from 
HRV measures to be analyzed further. They noted 
a higher HR in the stress stimulus condition than 
in the relaxation condition, as well as a statisti-
cally insignificant trend of reduced RMSSD in 
the stress condition compared to the relaxation 
condition. In the study by Cardone et al. (2020), 
the stressors during simulated driving were 
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emergency situations and traffic. RR intervals were analyzed, as well as the 
so-called Baevsky’s Stress Index (SI, see Cardone et al., 2020), which was used 
as a referential measure. The participants were not asked about their subjec-
tive feelings with respect to perceived stress, so it is difficult to demonstrate 
that the SI was the correct ground truth measure. 

Table 5. �A summary of the most popular parameters derived from ECG in 
the stress-related driving studies.

Inter-beat interval (IBI) / RR interval

Description
A period between two subsequent R peaks in ECG [ms]. Typically, normal RR 
(known as NN) intervals are taken into consideration, after exclusion of ab-
normal peaks (Shaffer & Ginsberg, 2017).

Overview results

Dobbins & Fairclough, 2018: mean IBI among top features in stress discrim-
ination.

Huang et al., 2020: mean IBI significantly different among different stress 
levels.

Examples of use
Baek et al., 2009; Dobbins & Fairclough, 2018; Eilebrecht et al., 2012; Huang 
et al., 2020; Lanatà et al., 2014.

Heart rate (HR)

Description Number of heart beats per minute [bpm].

Overview results

Ashton et al., 1972: HR increased with stress/task difficulty.

Balters et al., 2021: HR increased in task after stressful stimulation in contrast 
to task after relaxation.

Dobbins & Fairclough, 2018: HR among top features in stress discrimination.

Eilebrecht et al., 2012: positive correlation of HR and TLX-based subjective 
workload.

Healey & Picard, 2000: HR feature with 52.6% performance in 4-class stress 
classification.

Examples of use

Baek et al., 2009; Ashton et al., 1972; Balters et al., 2021; Dobbins & Fairclough, 
2018; Eilebrecht et al., 2012; Healey & Picard, 2000.
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SDNN

Description Standard deviation of the NN intervals11 [ms].

Overview results Huang et al., 2020: SDNN significantly different among different stress levels.

Examples of use
Baek et al., 2009; Dobbins & Fairclough, 2018; Eilebrecht et al., 2012; Gruden 
et al., 2019; Huang et al., 2020; Lanatà et al., 2014.

RMSSD

Description
A parameter calculated as a root mean square of differences between subse-
quent NN intervals (Kleiger et al., 2005; Shaffer & Ginsberg, 2017) [ms].

Overview results

Balters et al., 2021: RMSSD decreased in task after stressful stimulation in 
contrast to task after relaxation (not statistically significant).

Huang et al., 2020: RMSSD significantly different among different stress levels.

Examples of use
Baek et al., 2009; Balters et al., 2021; Dobbins & Fairclough, 2018; Gruden et 
al., 2019; Huang et al., 2020; Lanatà et al., 2019.

pNN50

Description
Percentage of differences between the adjacent NN intervals greater than 
50 ms [%].

Examples of use Baek et al., 2009; Gruden et al., 2019; Lanatà et al., 2014.

LF power

Description
Power of the HRV low-frequency band, usually defined as 0.04–0.15 Hz (see 
Kleiger et al., 2005; Shaffer & Ginsberg, 2017) [ms2].

Overview results
Eilebrecht et al., 2012: negative correlation of percentage of LF power in 
a parameterized FFT spectrum and TLX-based subjective workload.

Examples of use
Baek et al., 2009; Dobbins & Fairclough, 2018; Eilebrecht et al., 2012; Lanatà 
et al., 2014.

HF power

Description
Power of the HRV high-frequency band, usually defined as 0.15–0.4 Hz (see 
Kleiger et al., 2005; Shaffer & Ginsberg, 2017) [ms2].

Examples of use
Baek et al., 2009; Dobbins & Fairclough, 2018; Eilebrecht et al., 2012; Lanatà 
et al., 2014.

11	� The NN intervals are the RR intervals calculated after the exclusion of abnormal peaks in the 
ECG signal (Shaffer & Ginsberg, 2017).
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LF/HF ratio

Description
A ratio of low-frequency and high-frequency bands power in HRV. After cal-
culating the LF and HF power, the ratio can be established. 

Overview results
Healey and Picard, 2000: Autonomic Balance feature (similar to LF/HF) with 
52.5% performance in 4-class stress classification.

Examples of use Baek et al., 2009; Dobbins & Fairclough, 2018; Healey & Picard, 2000.

VLF power

Description
Power of the HRV very low-frequency band, usually defined as 0.0033–0.04 
Hz (see Kleiger et al., 2005; Shaffer & Ginsberg, 2017) [ms2]. 

Examples of use Dobbins & Fairclough, 2018; Lanatà et al., 2014.

Total power

Description
Total power estimated for the signal (see Kleiger et al., 2005; Shaffer & Gins-
berg, 2017) [ms2].

Examples of use Dobbins & Fairclough, 2018.

Dobbins & Fairclough (2018) recorded ECG and PPG activity in a group of 
participants during daily drives to and from work. The study had no ad-
ditional stressors other than situations naturally encountered on the road. 
Multiple parameters of ECG and PPG signals were analyzed, and the mean 
and standard deviation of Pulse Transit Time, heart rate and mean IBI were 
identified as the best features in stress discrimination. However, a limitation 
of this study is that the researchers’ subjective inference about the possible 
occurrence of a stressful situation was based on contextual photographs, 
supported only with pre/post mood assessment questionnaires. 

Eilebrecht et al. (2012) tested the hypothesis that driving in the city would lead 
to greater workload than driving on the highway. Participants also answered 
the NASA-TLX scale during the study. The researchers analyzed multiple 
ECG indices and identified mean HR as correlating with subjective workload 
ratings and percentage of LF power from parameterized FFT spectrum as 
negatively correlating with subjective workload ratings. However, an import-
ant limitation of the present study is the small sample size, and the selection 
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of HRV parameters was left unjustified and analyzed without explicitly stated 
hypotheses first. 

In a study by Healey & Picard (2000), the ECG signal collected during naturalistic 
driving study (NDS) conducted in areas of varying complexity (e.g., highways, 
toll booths) was analyzed, and the participants’ subjective ratings of perceived 
stress levels were collected. Two variables were analyzed—heart rate and auto-
nomic balance, which is a similar parameter to the LF/HF ratio. The study design 
covering four stress level categories evaluated the indices in stress classification, 
indicating 52.6% for heart rate and 52.5% for autonomic balance performance in 
stress classification. In a study by Huang et al. (2020), ECG was measured under 
simulated conditions, with mental arithmetic being the stress-inducing task. It 
was noted that all three analyzed indices (mean IBI, SDNN, RMSSD) significantly 
differed between separated stress levels. However, in the study description, there 
is a lack of information about the sample size. Therefore, discussing these results' 
potential relevance and generalizability is challenging.

In a study by Kerautret et al. (2022), participants drove in a simulator in an 
experimental condition with three levels of threat predictability: unfamiliar 
and unpredictable, unfamiliar and predictable, familiar and predictable. They 
observed an increase in HR after a traffic event in both predicTable conditions 
for all participants and unpredicTable conditions for some of them. In the 
study by Lanatà et al. (2014), participants were enrolled to drive in a simulated 
environment. In addition to the control condition, they were presented with 
two levels of stress driving conditions (skids and skids + mental arithmetic). 
The ECG signal was analyzed with multiple indices (including mean NN, 
SDNN, RMSSD, pNN50) and indicated that statistically significant differenc-
es were found for all characteristics for at least one condition.

Only a few studies discuss the use of EMG for stress testing in the context 
of driving. One study by Healey & Picard (2000) measured EMG from the 



participant’s back (the precise location was not 
specified in the report), and drivers participated 
in an NDS procedure with naturally occurring 
stressors along the way. The mean and variance 
of the EMG signal was determined for each 
one-minute segment, and the performance of 
each feature was then determined for 4-class 
classification, with mean EMG resulting in 58.3% 
and variance of EMG with 53.5% of performance.

Photoplethysmography is another technique 
besides ECG that allows us to observe specific 
changes occurring in the cardiovascular system. 
Because of its ease of use, it is popular in psy-
chophysiological research, but in the context of 
stress-related driver studies, it appears to be used 
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less frequently than ECG. Baek et al. (2009) study used a PPG sensor on the 
steering wheel of a vehicle, and the study itself looked at the effects of mental 
and physical stressors on the driver. The variable of interest to the research-
ers was PAT. At the same time, no group results were presented, making it 
difficult to systematically assess the usefulness of this feature in monitoring 
stress. In contrast, Dobbins and Fairclough (2018) study used a PPG sensor 
attached to the driver’s ear, and the participants drove in an NDS procedure in 
which only stressors naturally occurring in traffic appeared. The researchers 
were interested in the Pulse Transit Time (PTT) variable, and then identified 
mean PTT and standard deviation of PTT among the top features in stress 
discrimination.

Table 6. �A summary of the most popular parameters derived from PPG in 
the stress-related driving studies. 

Pulse Arrival Time (PAT)

Description
Time interval between ECG R peak and the characteristic point of the pulse 
wave of the peripheral artery (Baek et al., 2009).

Overview results
Baek et al., 2009: they investigated mean PAT, but the data were presented 
individually, with no group analysis.

Examples of use Baek et al., 2009

Pulse Transit Time (PTT)

Description
“Time interval between an R peak in the ECG and the subsequent S peak of 
the PPG [33].” (Dobbins & Fairclough, 2018, p. 6).

Overview results
Dobbins & Fairclough, 2018: mean PTT and SD PTT among the top features 
in stress discrimination.

Examples of use Dobbins & Fairclough, 2018

There are also studies in which the temperature measurement of drivers under 
stress exposure is of interest. In a dual-task-paradigm simulator study by 
Anzengruber and Riener (2012), the authors used thermal imaging to assess 
the relationship between temperature changes and cognitive load increases. 
Among the areas of interest studied were the temple and inner corners of the 



eyes. Some associations were noted between tem-
perature changes in these areas and workload, but 
without clear conclusions. Furthermore, we need 
to keep in mind that cognitive workload and stress 
are not the same phenomena, and their co-occur-
rence would need to be further investigated before 
transferring or interpreting such outcomes from 
cognitive load studies as potential stress indi-
cators. The study by Cardone et al. (2020) used 
thermal imaging in a simulator study considering 
stressors, and the areas of interest were the nose 
tip, nostrils, and glabella. A group of parameters 
from the thermal signal were determined for the 
indicated areas. Then, the relationships between 
their values and the Stress Index, which was also 
obtained in the study, were analyzed. The authors 



then indicated which calculated parameters were 
most significant in predicting the Stress Index. For 
the ROI nose tip, it was kurtosis and skewness. For 
nostrils, the standard deviation, and for glabella, 
it was the 90th percentile. However, a limitation 
of the study is the adoption of the Stress Index 
as a reference measure without the subjective 
assessment of stress levels from the participants’ 
perspective. 

In a study by Yamakoshi et al. (2008), the authors 
also investigated skin temperature measurement 
to search for driver stress correlates. The study 
was conducted with 25 participants driving 
a monotonous simulated scenario. Next to the 
temperature measurements, blood pressure 
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measures were taken into consideration, and subjective stress was reported 
for each 10-minute period, with a 1–9 Likert-type scale. The prior assumption 
in the study was that monotonous driving would presumably increase stress 
levels, as drivers need to keep focused throughout the drive. The authors 
collected the data from preselected ROIs, such as finger, nose, cheek, jaw, or 
forehead, divided to represent peripheral (finger, nose) and truncal (cheek, 
jaw, forehead) parts. They observed a slight but significant decrease in nose 
and fingertip temperatures. However, temperatures of the truncal parts did 
not rise, and they claim this is a good sign, as these may be used to represent 
general disturbances of temperature because their outcome was not different 
than the one for baseline. However, stress caused by monotony covers one 
from a plethora of different factors, and, for example, forehead temperature 
measurement in a different setting and stressor exposition could potentially 
be a good candidate for stress assessment (e.g., in a setup inducing cognitive 
load forehead temperature may rise, see e.g., Abdelrahman et al., 2017). 

The next physiological source of information we discuss is the use of respi-
ration-related techniques. It is a measurement of some interest in studies of 
stress among drivers, usually associated with the application of sensors placed 
on the chest to monitor the degree of chest expansion. 

In the Ashton et al. (1972) study, which was mentioned earlier with respect to 
ECG, respiratory measures were investigated in addition to other physiologi-
cal measurements. The parameter further analyzed was mean respiration rate, 
yet no statistically significant differences were found for this feature between 
the baseline task and tasks likely to cause higher levels of stress in the par-
ticipants. In a study by Baek et al. (2009), also discussed earlier, the sensor 
for measuring respiration was attached to the seat belt. They reported the 
outcomes for mean respiratory rate by comparing mean values from baseline 
and experimental conditions for each participant separately. There was a large 
variability both in terms of inter- and intraindividual aspects, yet some of 
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the individual results were significant. In the Healey and Picard (2000) study, 
a respiratory signal was collected from the chest. The researchers determined 
two parameters: mean and variance of respiratory signals. Then, they de-
termined performance in 4-category stress classification for these features 
with a score of 62.2% for mean and 50.2% for variance of the signal. In the 
simulator study by Lanatà et al. (2014), the authors determined the following 
parameters: respiration rate and the mean and standard deviation of the first 
and second derivatives of the signal. Among the investigated features, they 
found interesting observations in respiration rate, signal power in 0.1–0.2 Hz 
band, and skewness-related features.

Table 7. Summary of overview results for Respiratory Rate.

Respiratory Rate

Description Number of breaths per minute [bpm].

Overview results

Ashton et al., 1972: no significant differences between the levels inducing 
more stress and the basic levels. 

Baek et al., 2009: for mean respiratory rate comparison of baseline vs exper-
iment levels was conducted for each participant separately. Some results 
were significant. 

Large inter- and intraindividual variability. Healey and Picard, 2000: mean 
respiration with 62.2% performance in 4-category stress classification; vari-
ance of respiration with 50.2% performance. 

Lanatà et al., 2014: they investigated respiratory rate, mean and SD of the 
1st and 2nd derivatives. They found some significance for respiratory rate, 
0.1–0.2 Hz band power, and the skewness values.

Examples of use Ashton et al., 1972; Baek et al., 2009; Healey & Picard, 2000; Lanatà et al., 2014.

One of the most popular psychophysiological measurement techniques in 
driver stress research is undoubtedly Electrodermal Activity/Galvanic Skin 
Response. It appears in a variety of configurations, and due to the relative 
convenience of the data collection procedure, as well as the clearer psycho-
physiological interpretation, it is of great interest to the research community, 
as well as for possible industrial applications.
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For EDA/GSR sensors, there are various approaches in their application, such 
as on the steering wheel (Baek et al., 2009), but usually the test is conducted 
with electrodes placed on the fingers (e.g., Dogan et al., 2019; Lanatà et al., 
2014). A study by Bitkina et al. (2019) looked at a number of parameters cal-
culated from the GSR signal, including features of amplitude and duration 
of activity. From a subset of the parameters analyzed, some were identified 
as significant predictors in stress assessment, including, among others, the 
number of occurrences, duration, and amplitude of responses. However, by 
virtue of the fact that this was a longitudinal, but single case study, and the 
assumptions regarding stress induction were significantly simplified, the 
identified parameters would require confirmation in subsequent experi-
mental studies on stress in a larger group of drivers. The Healey and Picard 
(2000) study used foot and hand GSR recording. The GSR signal's mean and 
variance were calculated for one-minute signal segments, and also the values 
associated with the so-called GSR startle response were determined. The 
authors indicated how the individual traits fared in the 4-class classification 
of stress levels, and of the GSR signal traits analyzed, it was mean GSR that 
showed the most promise, with 62.0% of performance.

In the study by Lanatà et al. (2014), which we also described earlier, the GSR 
signal was analyzed while considering the tonic and phasic components of the 
signal. The detailed contribution of each calculated feature was not described. 
Still, the authors reported that the parameters determined for both com-
ponents allowed them to distinguish between three levels of the procedure 
complexity, i.e., baseline condition, condition with physical stimuli (lateral 
skids), condition with physical and cognitive stimuli (lateral skids + mental 
arithmetic).

As this is just an overview and not a systematic review or meta-analysis, we 
cannot provide you with a summary of the section, having clear-cut recom-
mendations or ground truths with regard to physiological data acquisition 



and analysis in driver stress research. However, 
we hope that we successfully guided you through 
some of the complexities associated with includ-
ing psychophysiological measures, with possibly 
clear explanations of the specific signals. It is still 
an open field for further research explorations. 
Yet, after reading many experimental works in 
this domain, we see that emphasis should be put 
on larger study samples and a more thorough 
description of hypotheses standing behind the 
choice of certain tools and parameters. However, 
in the next section, we will briefly target an aspect 
that was not specifically mentioned before, namely 
the application of physical and, to some extent, be-
havioral measurements in studying stress among 
drivers.
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2.3. �Selected examples of physical 
and behavioral measures in driving 
context

Next to the measurement of internal bodily signals, and those externally 
“visible”—such as eye-tracking and thermal monitoring, which may indicate 
changes in the activity of specific organs or systems—there exist measures 
derived from biomechanical data, and also those which can be obtained from 
the vehicle information. In the work of J. Lee et al. (2021), authors proposed 
the existence of three types of data, which can be useful for stress detection 
in drivers: vehicle data, facial behavior data, and physiological data. Based on 
our work and experience with a variety of data collected in driving studies, 
we decided to tentatively disentangle data sources into subjective assessment, 
physiological input, and a “mechano-behavioral” category to cover all the 
aspects in a satisfying manner. The “mechano-behavioral” category could 
be further split into bodily movements and forces, facial behavior, and driver 
performance data/vehicle feedback. 

Among ways that fall into the first from the listed categories, there exist 
sensors measuring the grip forces or posture, and also actigraphs recording 
acceleration of different body parts, e.g., limbs. These are not very com-
mon in studying stress specifically, yet we found two examples of studies 
using such tools. In one of them (Dogan et al., 2019), force-sensing resistors 
(FSR) were used to measure grip forces put on the steering wheel, next to 
the physiological measurement of the EDA signal. Authors discussed the 
FSR-derived results in light of gender differences during stress, yet with no 
general conclusions on usability of such metrics in a general application 
for stress level determination. The second research work by D. S. Lee et al. 
(2016) included an Inertial Measurement Unit (IMU) sensor on top of the 
participants’ hands, mounted in a wearable glove, to estimate the steering 
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wheel motion and further derive some features for stress estimation. As force 
sensors may still be viable, posture and acceleration measuring devices, which 
were mentioned above, seem to be of limited usability in terms of driver stress 
assessment because both could be affected due to driver’s specific mobility 
in a vehicle cabin. No clear associations were found regarding postural or 
acceleration-based stress correlates, which would be valid specifically for 
driver’s posture and mobility.

Another category of data can be associated with the derivation of features 
from the facial behavior of a driver. One example of such a study can be 
found in Gao et al. (2014), in which authors assumed that two of the basic 
emotions, anger and disgust, will be stress indicators. A stress state will 
be detected if those emotions are to be recognized from a driver’s face in 
a specified time interval. The authors trained a Machine Learning model on 
the basis of existing databases of emotional facial expressions and evaluated 
its performance with their own data, including office and vehicle scenarios. 
Unfortunately, the authors did not provide detailed information regarding 
detected landmarks or features, which heavily contributed to successful 
detection. One limiting factor of this study is that the assumption that those 
two emotions convey stress may not be certainly correct, and the authors did 
not create a setup enabling them to naturalistically challenge the assumption, 
as participants were only asked to mimic certain emotions. Yet, the research 
work itself may be a useful resource from the perspective of camera-based 
system development.

When it comes to mechanical properties, not only the data collected directly 
from the driver may be valuable. For example, in driving simulator studies, 
we can collect information about the properties of steering wheel behavior. 
Alternatively, having the sensors mounted on steering wheel, we can collect 
the data about the grip force directly from it. Aside from that, we can collect 
behavioral measures in terms of reaction times, speed, or distance to the 
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lane center, which may be valuable in terms of estimation of the influence 
of stress on driver performance. Such an example can be found in the work 
of Balters et al. (2021), in which authors propose utilization of steering wheel 
angle data for driver stress detection. Yet, one limitation that should be high-
lighted is that the proposed model’s performance was limited to curvy roads. 
Another example can be found in one of the works cited earlier, Lanatà et al. 
(2014), in which changes in selected mechanical parameters (steering wheel 
angle correction, vehicle velocity difference) obtained from some predefined 
periods of the simulated drive were found to be significantly correlated with 
stress increase. 

The abovementioned examples of physical and behavioral measurements were 
provided here not as a result of comprehensive, systematic review on that 
matter but rather to present a complete scope of tools we already have in our 
toolbox. However, as it goes for all the methods we discuss in the handbook, 
hypotheses, not the methods, drive the study. Therefore, a careful selection of 
our "screwdrivers” and “hammers” is still in our hands (pun intented, again).
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2.4. �Driving research meets multimodal 
assessment and Machine Learning-
based approaches

A primary observation from the research discussed up to this point is that 
stress studies in drivers typically involve many variables, which could be 
of potentially vital interest when searching for answers to the questions 
with which we started the handbook. What is stress? How can we measure 
the phenomenon? How can we tackle the issue of stress among drivers? Well, 
right now, we already know that plenty of research tools are available, yet 
also that the analysis and interpretation of the outcomes may be seriously 
complex. As there is no single “ground truth” measure to which we can refer 
as an excellent, always-reliable marker of stress, we still need to keep to the 
path of continuous searching whether—for example—any combinations of 
methods will suffice in terms of stress detection. It is the primary reason 
behind a multimodal approach, which allows us to consider in parallel psy-
chological variables, which can be derived from questionnaires and 
subjective assessment, physiological variables recorded in the study 
course, and sometimes biomechanical variables or behavior al 
and driving performance features. The essence of this approach lies 
in an attempt to capture the multidimensionality of the correlates and influ-
ences accompanying the occurrence of stress. So far, we have discussed the 
aspects of how stress impinges on the occurrence of a physiological response, 
how the occurrence of stress may affect a person’s cognitive functioning, as 
well as their subjective assessment, or their behavior. In the case of driver 
studies, such opportunity arises, as in a properly designed experimental 
procedure, observations can be made in parallel for each of these areas. Thus, 
a multimodal approach entails that the data accompanying the different lev-
els of correlates of the stress phenomenon can be analyzed and interpreted 
in light of the hypotheses and experimental conditions created. However, 



multimodality means “increased complexity” as 
well. A multitude of data streams originating from 
different functional levels—behavioral, physi-
ological, or introspective/subjective—with no 
clear-cut nor obvious causal relationships, seem 
to be a challenging task to solve.

Our Team efforts are dedicated to much more 
than the concept of driver stress itself, and as 
we had been researching the topic of yet another 
widely discussed phenomenon—driver sleepi-
ness—we coined the term “Driver State Bermuda 



Triangle”12, which was supposed to picture the 
complexity of driver drowsiness assessment with 
vertices representing the three major levels of sci-
entific investigation, and the center of the triangle, 
with a large question mark, representing “a (still) 
big unknown” of causal interrelations between 
those levels (see Figure 3). After deep diving into 
different aspects of driver-oriented human factors 
research, we started to observe that it may follow 
a similar picture for other cognitive states inves-
tigated.

12	� With subsequent investigations, we observed that the term 
“Bermuda triangle” in the area of cognitive science, neuro-
science or psychology seems to be quite popular in different 
contexts (e.g., Friedman, 2021; Pettersson et al., 2018), yet to 
our best knowledge we used it for the first time in the given 
context within the field of driver state research. 

B E H AV I O R

?
P H Y S I O LO G Y

I N T R O S P E C T I O N 
/  S U B J E C T I V I T Y

Figure 3. 

A pictorial 

representation 

 of the term  

“Driver State 

Bermuda Triangle”.



9 7

The Triangle is comprised of three vertices—behavior, introspection and phys-
iology, each representing a different explanatory level of a certain phenome-
non—it could be drowsiness or a stress state, being the core topic of the book. 
The state of causal relationships between these factors seems to be currently 
unknown, as no strict or perfectly reliable chains of causality seem to be es-
tablished. For example, the occurrence of physiological stress correlates does 
not need to be necessarily followed by any facial expression nor by the partic-
ipant’s conscious perception of stress declared through subjective assessment. 
Will the “Driver State Bermuda Triangle” be solved over time? It may be 
so, but as for the current state of knowledge, causality between each of the 
vertices is not established. Therefore, incongruences between the outcomes 
from different levels grasping the phenomenon may occur. Let’s imagine us 
as study experimenters observing what follows: a physiological variable, e.g., 
low-frequency HRV; subjective assessment—e.g., an introspective report from 
the driver that they feel stressed “a little” at some time point, and a behavioral 
metrics, e.g., more frequent gaze vector shifts during a given period. Is it 
enough to claim that the driver is under stress? Are there any better or worse 
metrics out of those? No such answers will be given here, but this is where 
we can start some really deep diving investigations. Things can get seriously 
complex if we aim at monitoring the time courses of physiological, behavioral, 
and introspective responses, as without prior assumptions on causal factors 
intermediating in expressions on each level, we may be stuck in a “which was 
first—chicken or egg?” position. Does it mean that our efforts at reaching 
a proper assessment of different cognitive states are pointless? Certainly not, 
as only through the means of continued research we can push the boundaries 
further, understand the phenomenon better, and proceed with technological 
solutions, step-by-step covering more complex stress assessment—starting 
with obvious, clear-cut cases in which the three vertices equally voice for the 
occurence of stress events, and then, with increasing knowledge, aiming at 
grasping more nuanced cases from the Triangle. Therefore, no worries, roll 
up your sleeves. We still have a lot of fascinating research work to be done 
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in this domain. Now, let’s take a look at some of the concepts and tools that 
might be helpful in this research journey. 

There are a variety of approaches used to analyze multimodal data. The most 
basic and widespread is the one in which the data from each modality is 
analyzed in a standard way for it—e.g., for the ECG signal, it is the appro-
priate filtering, followed by the detection of R peaks and the calculation of 
characteristic HRV measures; for thermal data it could be preprocessing, ROI 
selection and subsequent analysis of any changes between conditions. In the 
next steps, the obtained data features can be subjected to correlation analysis 
to trace possible co-variation in the data, as the search for similarities or 
trends may facilitate the analysis through data dimensionality reduction or 
simplify the study setup in the following iterations if there is unnecessary 
redundancy present. Having a referential measure (e.g., the subjective as-
sessment of stress levels by the participant or experimental conditions that 
evoke different stress levels—e.g., low, medium, high), observations can be 
made as to which variable (physiological, mechanical, driving parameters, 
etc.) possibly reproducibly “follows” the referential measure and thus could 
be a measure supporting detection or prediction of the occurrence of stress 
response under driving conditions.

As some interactions can be more complex or nonlinear, Artificial Intelli-
gence (AI) algorithms are of particular interest to researchers, enabling 
the construction of classifiers and predictive models that are based on the 
identification of very complex relationships between variables. Right now, 
we will take a look at some of the exemplary research works aimed at driver 
stress estimation, which utilized AI tools in their multimodal approach. We 
will not dwell on the aspects of implementation, explanation, or selection of 
certain Machine Learning models in the reviewed articles, as this is not the 
book's core. Still, we will provide some additional comments where needed. 
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The section is finished with a brief summary of arguments in favor, but also 
risks of inconsiderate application of ML tools in the domain.

In the research work of Zontone et al. (2021), the authors investigated the 
application of ML techniques in binary stress classification upon the Skin 
Potential Response (SPR) signal. For that purpose, they conducted a driving 
simulator study with two separate conditions: the one presumed to be more 
stressful, with other road users presenting unpredicTable behavior, and the 
second, with no such potential stressors present. Authors presented four 
classifiers: SVM, RF, DT, k-NN13, which were trained in their earlier study, 
and having several features calculated from the SPR signal in the current 
study, they approached binary classification of states as “stress” vs. “no stress”. 
However, only the percentage of performance for single participants and 
the mean were presented for the percentage of intervals labeled as “stress”. 
A limiting factor of the study lies in a lack of additional referential measures, 
assuring that the participants were indeed facing stress. Another example, the 
paper mentioned in the previous section, from J. Lee et al. (2021), explores 
the possibility of applying Convolutional Neural Networks (CNNs) in the 
domain of stress detection. To do so, the authors used short-time data from 
hand and foot GSRs and heart rate measurements. From the time domain, 
the authors shifted the signal data to a phase space, creating nonlinear data 
representations, which were further provided as the input data to the CNNs, 
which aimed to produce a binary output on stress state detection, distin-
guishing between high and low stress levels. The models were evaluated on 
a publicly available stress dataset, with assumptions that rest = low stress, 
highway = medium stress, and city = high stress. For brief, 30-second signals 
(from a preselected subset of driving data, not from the whole drive), authors 
reported 95.67% accuracy; for 10-second signals, it was 92.33%. Their work also 
highlighted the superiority of multimodal over unimodal approach, as the 

13	� See List of abbreviations for the abbreviations describing Machine Learning models exemplified 
in this chapter.
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integration of signals resulted in better accuracies of their models. However, 
assumptions of induced driver stress level, which were not backed by drivers’ 
feedback, and predefined chunks of signals that were under consideration 
may presumably limit the model's generalizability. Yet, the approach with the 
application of signal phasic representations seems to be interesting. An exam-
ple of using another biosignal data as the state evaluation basis can be found 
in the research work by D. S. Lee et al. (2016). The authors proposed an SVM 
classifier relying on features obtained from a wearable glove worn by drivers 
in the study. They used an IMU for movement estimation, such as steering 
wheel motion and PPG, to obtain features related to drivers’ pulse waves. The 
study was conducted in a driving simulator, with three scenarios covering 
city, highway, and urban driving and simulated random weather conditions. 
A good remark is that the authors took care of subjective assessment of driver 
state, with Driver Behavior Survey pre – and post-session and a survey on 
physical statuses of drivers. The authors also investigated drivers’ facial be-
haviors to search for features for further stress classification. The study seems 
to be an excellent example of multimodality, as next to physiological, bio-
mechanical (steering wheel movement), and subjective indices, a physician's 
assessments were also considered. After feature selection, SVM classifiers 
were trained, and one of them (SFS-SVM with RBF kernel) reached approx-
imately 95% accuracy in a binary stress classification. A study by Cardone 
et al. (2020), which was already mentioned as an example of using ECG and 
thermal imaging, was also oriented toward developing an ML model based on 
the recorded input data. “Stress Index” calculated from the ECG recordings 
served as a referential measure to label the data, while features from thermal 
monitoring were utilized in the SVM-based model development. The results 
obtained were a sensitivity of 77%, a specificity of 78%, and the correlation 
between the “Stress Index” and stress predicted from thermal images was r = 
0.61 (p reported as ~0). From the perspective of human factors research, the 
assumptions for “stress” and “no stress” categories could be better supported, 
with, e.g., subjective assessment and the usage of the ECG-derived “Stress 
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Index” as a gold standard could be justified more thoroughly. One of the 
earlier works on multimodal approaches in driver stress recognition was pub-
lished by Healey and Picard (2000). Having ECG, respiratory, EMG, and GSR 
measurements, but also self-reported questionnaires in a naturalistic driving 
study setting, the authors calculated variables and further subjected them 
to a feature selection procedure to create a ranking of individual predictors. 
Within selected features, authors investigated performance for correct stress 
state classification in a four-class setting (low, neutral, high, very high stress). 
The last study we exemplify here was reported by Lanatà et al. (2014), in which 
the authors aimed at recognizing three categories—normal driving, first – 
and second-level stress. On the basis of prior feature calculation and selection 
upon collected time series (ECG, EDA, respiration, simulator-derived data), 
the authors proposed three input datasets and three types of classifiers for 
further exploration. In their study, the model based on the Nearest Mean 
Classifier resulted in an accuracy greater than 90%.

These were some illustratory examples of how multimodal approaches may 
serve us in practice and for what purposes AI can be sufficient. However, 
utilization of ML tools should be performed with proper care. Next, we 
will look over the primary benefits and some existing threats and risks that 
could occur while incorporating ML approaches in development. Surely, as 
we aim to somehow discretely or non-discretely detect and classify the state 
of stress, methods of Artificial Intelligence seem to be superior, in general, 
over heuristics – or rule-based algorithms, as the rules themselves do not 
seem to be clearly identifiable nor universal for stress state detection. Machine 
Learning tools can be particularly helpful in grasping nonlinearities and large 
dataset complexity, and data dimensionality can be reduced through ML-
based feature selection approaches. Artificial Intelligence can greatly help 
integrate data or features from different modalities, as various approaches 
are being tailored for image data analysis, voice/natural language processing, 
or combinations of features from different domains. However, many open 
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questions arise that need to be addressed when using ML tools in a proj-
ect within the area of human factors research. One of them is the lack of 
transparency or explainability of the system, which can lead to difficulties in 
understanding the system’s decisions. From a practical standpoint, it may lead 
to a lowered acceptance rate of a system if too many false positive detections 
induce the alerts, notifications, or means to reduce stress. There are also 
experimental risks in the development of AI-based systems, such as ethnic, 
gender, or cultural biases, due to the lack of heterogeneity of the dataset used 
for training algorithms. Yet another bias, which tends to be rarely discussed 
in such studies, is related to health statuses, as various diseases or disorders—
usually due to study exclusion criteria—will probably be omitted in such ML 
tools and classifiers. Consequently, there will be a lack of representation of 
participants affected by certain medical problems in future datasets with 
which the systems are being trained, and this may lead to incorrect recog-
nitions or a narrowed scope of algorithm usage. When it comes to datasets, 
two other shortcomings are worth discussing. One is that samples can be 
imbalanced in terms of “stress” and “no stress” events, which could lead to, 
e.g., algorithm overfitting, as there will be only a very limited representation 
of data associated with a given label. The classical problem of “trash in, trash 
out” cases also exists. Suppose the data was collected improperly (with no 
caretaking for proper referential measures, environment, or study sample) 
or improperly processed (e.g., poor selection of techniques, lack of proper 
filtering, or simply enough know-how about certain data processing). In that 
case, it will lead to incorrectly collected features, and thus, the model and its 
responses will be flawed. 

However, most of the counterarguments listed here can be addressed with 
a proper study methodology and a clear pipeline for data processing. Gender, 
age or ethnic biases reduction can be attempted with recruitment of diverse 
participants. There exist methods for the class imbalances problem, e.g., 
data augmentation techniques, which could help reduce imbalances' effects. 
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However, care should and can be taken even at the level of a study protocol, 
with properly scheduled experimental and control conditions. When it comes 
to “trash in, trash out” situations, a careful selection of methods, clearly de-
fined hypotheses, and an analysis pipeline will help to lower the possibility 
of such scenarios. 

Artificial Intelligence techniques are currently revolutionizing different fields 
of human activity. Mobility and smart in-vehicle technologies are part of 
these activities, which are and will be largely influenced by ongoing develop-
ments in AI. ML-based algorithms may be very useful in the development of 
in-cabin sensing, yet care should be taken to understand and attempt to solve 
the challenges that are faced by ML implementations in different domains, 
such as explainability, liability, and biases.
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As we learned about a plethora of techniques that could be helpful 
in driver stress state determination, now seems to be a great time to take 
a look at what’s going on in the industry in this matter. In the subsequent 
section, we will briefly describe some recent public announcements or patent 
applications, which are somehow related to the concept of stress detection 
among drivers. We will finish this brief chapter with some concluding 
remarks and acknowledgements, and this is the last of our journey in this 
handbook edition.
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3.1. Market overview

Although stress detection is an ever-evolving concept in the context of driver 
monitoring systems, there are already several manufactured solutions and 
systems on the market, that take a wide variety of forms. Browsing online 
sources, one can find both articles and patent applications oriented at systems 
designed to detect, monitor, and sometimes even react to driver stress. These 
solutions come in different forms, including biometric systems, specialized 
equipment, wearable devices, and mobile applications. In this section, we will 
briefly present some examples of such systems, yet please note that this is not 
an advertisement of any described solutions, and the overview should serve 
only as a small set of market examples.

Among the systems available on the market, there are solutions such as “Ready 
Care”—a system developed by Harman that not only detects real-time stress 
factors but also aims to reduce stress in drivers by, for instance, suggesting 
the route with fewer stress factors (like traffic or bad weather) instead of the 
one recommended by the navigation (Soni, 2022; Harman Automotive, n.d.). 
Hyundai Mobis offers a solution called the “Smart Cabin Controller”. Next to 
driver stress detection, this multi-purpose system also takes active measures 
to reduce its level. It incorporates features like an aroma diffuser, a 3D pattern 
mood lamp, and the ability to prevent motion sickness or monitor carbon 
dioxide levels in the car cabin and adjust it by opening the windows (Ang, 
2022; Ryu, 2022). In addition to systems of this type, there are also a variety 
of equipment solutions and car accessories on the market to help combat 
stress. One of these is “The Active Wellness” seat developed by Faurecia. It is 
a seat that, through a biometric sensing system, senses stress or a drop in the 
driver’s energy and reacts accordingly—a message appears on a screen in the 
cabin with a recommended course of action if the seat detects stress or fatigue. 
If the driver accepts the system’s recommendations the cabin is cooled or 
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warmed depending on the detected state of the driver (Forvia Faurecia, 2017; 
Stock, 2015). 

It is also not unheard of for such solutions to work in combination with 
other tools—in some systems, for instance, “The Active Wellness”, the seat is 
designed to work in conjunction with any wearable device, and synchronize 
the data with it (Stock, 2015). Such fusion of wearable devices and the vehicle’s 
response to the data thus acquired can also be found in patent descriptions 
of other existing solutions (Siddiqui et al., 2017). Solutions similar to those 
used in Hyundai Mobis “Smart Cabin Controller”, such as aroma diffusers, 
can also be found in patent descriptions—for example, a system that spreads 
cedrol in the vehicle cabin depending on the driver’s stress and fatigue levels 
(Shinji & Teruhisa, 2018). Among the patented solutions there can also be 
found systems that attempt to reduce stress in drivers by making sounds or 
controlling the environment inside the vehicle cabin (Biss et al., 2020). 

As we can conclude, the topic of driver detection and stress reduction system 
development is alive, and the interest of OEMs and Tier 1&2 companies is 
growing. We can presume that in the following years, more solutions will 
be market-ready, and prototypes reaching more nuanced aspects of stress 
detection will also be announced.
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3.2. Concluding remarks

In the previous chapters, we dissected many of the key aspects accompanying 
the study of the complex phenomenon of driver stress. We did an accelerated 

“101” course about the effects of stress on the body, including statistical trends 
in terms of changes occurring in its various systems. We learned what tools 
can be useful in studying the phenomenon of stress in drivers, taking into 
account subjective, psychophysiological testing techniques and behavioral 
plus mechanical measurements, such as data from a vehicle or simulator. 
Then, we also learned that data from the aforementioned multiple sources can 
be traced integratively, using multimodal approaches that are currently more 
available thanks to the accelerated development of AI, among other things. 
We have achieved the fundamental premise for this handbook, which is the 
integration of information to serve as a toolbox. Now, the tools will remain 
in your hands and enable you to develop successful projects in driver stress 
research. From here, we wish you good luck and encourage you to share the 
results of your own research in this area. In time, perhaps we will collect 
enough of them to create the version 2.0 of the handbook, from which we 
will all learn even more about the phenomenon of stress in drivers, as well 
as ways to alleviate it and thus have a real impact on improving road safety.
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About Robotec.ai
Robotec.ai is a software company with three pillars of activity – Robotics, Machine 
Learning, and Human Factors. For the automotive industry, Robotec.ai provides 
services at different stages of testing and prototyping, with simulations for sensors 
and autonomous vehicles, contributions to open-source projects, such as the 
ROS2 library, and expertise in the field of Human Factors and Human-Machine 
Interaction. The Human Factors team—which we, the authors, are a part of—
helps our customers in the development of Advanced Driver Assistance Systems, 
with emphasis on Interior Sensing and Driver Monitoring Systems. Through our 
expertise in the regulatory space, psychophysiology, data science, and hardware 
engineering, we can provide full assistance in testing and validating of ADAS, 
specifically, DMS.
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